Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
A parallel particle swarm optimisation for selecting optimal virtual machine on cloud environment
ID
Abdelaziz, Ahmed
(
Avtor
),
ID
Anastasiadou, Maria
(
Avtor
),
ID
Castelli, Mauro
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,43 MB)
MD5: AC077963C31192584BBC84242D7FE053
Galerija slik
Izvleček
Cloud computing has a significant role in healthcare services, especially in medical applications. In cloud computing, the best choice of virtual machines (Virtual_Ms) has an essential role in the quality improvement of cloud computing by minimising the execution time of medical queries from stakeholders and maximising utilisation of medicinal resources. Besides, the best choice of Virtual_Ms assists the stakeholders to reduce the total execution time of medical requests through turnaround time and maximise CPU utilisation and waiting time. For that, this paper introduces an optimisation model for medical applications using two distinct intelligent algorithms: genetic algorithm (GA) and parallel particle swarm optimisation (PPSO). In addition, a set of experiments was conducted to provide a competitive study between those two algorithms regarding the execution time, the data processing speed, and the system efficiency. The PPSO algorithm was implemented using the MATLAB tool. The results showed that the PPSO algorithm gives accurate outcomes better than the GA in terms of the execution time of medical queries and efficiency by 3.02% and 37.7%, respectively. Also, the PPSO algorithm has been implemented on the CloudSim package. The results displayed that the PPSO algorithm gives accurate outcomes better than default CloudSim in terms of final implementation time of medicinal queries by 33.3%. Finally, the proposed model outperformed the state-of-the-art methods in the literature review by a range from 13% to 67%.
Jezik:
Angleški jezik
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
Št. strani:
Str. 1-25
Številčenje:
Vol. 10, iss. 18 (art. 6538)
PID:
20.500.12556/RUL-124231
UDK:
004:78
ISSN pri članku:
2076-3417
DOI:
10.3390/app10186538
COBISS.SI-ID:
38415107
Datum objave v RUL:
11.01.2021
Število ogledov:
722
Število prenosov:
229
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
11.01.2021
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Naslov:
GADgET
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0113/2019
Naslov:
AICE
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj