izpis_h1_title_alt

Geometrija hiperbolične ravnine : delo diplomskega seminarja
ID Blažej, Maja (Author), ID Mrčun, Janez (Mentor) More about this mentor... This link opens in a new window, ID Kališnik, Jure (Co-mentor)

.pdfPDF - Presentation file, Download (769,16 KB)
MD5: 1889221DEBED970628AE2A1752F49258

Abstract
Peti aksiom evklidske geometrije pravi, da skozi dano točko T, ki ne leži na premici p, poteka natanko ena vzporednica k p skozi točko T. Če ta aksiom izpustimo, lahko za modele dobimo različne neevklidske geometrije. Mi bomo obravnavali hiperbolično geometrijo, kjer k vsaki premici lahko narišemo neskončno vzporednic skozi dano točko. Najprej bomo hiperbolično ravnino definirali, nato si bomo ogledali izometrije v hiperbolični ravnini in dokazali, da vse izometrije, ki ohranjajo orientacijo, lahko zapišemo v obliki Möbiusove transformacije. Pokazali bomo, da le-te tvorijo grupo izometrij v hiperbolični ravnini. Dokazali bomo tudi nekaj osnovnih izrekov hiperbolične trigonometrije.

Language:Slovenian
Keywords:hiperbolična ravnina, izometrije hiperbolične ravnine, Möbiusova transformacija, hiperbolična trigonometrija
Work type:Bachelor thesis/paper
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-124056 This link opens in a new window
UDC:517.5
COBISS.SI-ID:58540291 This link opens in a new window
Publication date in RUL:23.12.2020
Views:945
Downloads:128
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hyperbolic plane geometry
Abstract:
The fifth axiom of Euclidean geometry says that for any given point T, that does not lie on a line p, there exists exactly one line through T that does not intersect p. If we disregard this axiom, we get different non-Euclidean geometries. We will investigate the hyperbolic geometry, where for each line an infinite number of parallel lines can be drawn through a given point. First, we will define the hyperbolic plane, then we will explore isometries of hyperbolic plane and prove that every isometry that preserves orientation can be written in the form of a Möbius transformation. We will show that isometries that preserve orientation form a group of isometries in the hyperbolic plane. In the end, we will prove some of the fundamental theorems of hyperbolic trigonometry.

Keywords:hyperbolic plane, isometries of hyperbolic plane, Möbius transformation, hyperbolic trigonometry

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back