izpis_h1_title_alt

Konstrukcije trikotnika s tremi znanimi točkami : magistrsko delo
ID Kozinc, Anja (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,25 MB)
MD5: E325248925C1A09B557F58478C22352D

Abstract
Zanima nas, ali lahko s šestilom in ravnilom konstruiramo trikotnik $\triangle ABC$, če imamo v ravnini podane tri točke iz množice \{oglišča, razpolovišča stranic, nožišča višin, presečišča stranic s simetralami kotov, središči očrtane in včrtane krožnice, višinska točka, težišče\}. Omenjena množica nam ponuja $139$ netrivialnih in bistveno različnih možnih trojic točk, npr.\ trojica $\{A, B, C\}$ je trivialna, trojico dveh oglišč in težišča pa lahko zapišemo kot $\{A, B, G\}, \{B, C, G\}$ ali $\{A, C, G\}$, kar so simetrični oz.\ analogni konstrukcijski problemi. Izmed teh trojic je $74$ takih, ki omogočajo konstrukcijo trikotnika $\triangle ABC$, poteki konstrukcij so zapisani v magistrskem delu.

Language:Slovenian
Keywords:konstrukcija trikotnika, oglišča, središče očrtane krožnice, razpolovišča stranic, težišče, nožišča višin, višinska točka, središče včrtane krožnice, presečišča simetral kotov z nasprotno stranico
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-122441 This link opens in a new window
UDC:514
COBISS.SI-ID:50383875 This link opens in a new window
Publication date in RUL:11.12.2020
Views:1818
Downloads:197
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Triangle constructions with three located points
Abstract:
We would like to construct a triangle $\triangle ABC$, if we know positions of three points from the set \{vertices, feet of the medians, feet of the altitudes, feet of the internal angle bisectors, circumcenter, incenter, orthocenter, centroid\}. Then we have $139$ problems, all non-trivial and significantly distinct. For example, the triple of points $\{A, B, C\}$ is trivial, the selection of the triple of points to be two vertices and the centroid of a triangle could be listed as $\{A, B, G\}, \{B, C, G\}$ or $\{A, C, G\}$, which are all analogous. Only $74$ of these problems are solvable and we present their constructions.

Keywords:triangle construction, vertices, circumcenter, feet of the medians, centroid, feet of the altitudes, orthocenter, feet of the internal angle bisectors, incenter

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back