izpis_h1_title_alt

Analiza mehkega samorazvijajočega se sistema na osnovi Gaussovega rojenja : magistrsko delo
ID Petković, Uroš (Author), ID Škrjanc, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,23 MB)
MD5: 46EF2E93A05848E3A7F8A9C5109BCFD8

Abstract
V magistrskem delu smo predstavili področje samorazvijajočih se sistemov, pri čemer smo se osredotočili na sisteme z mehko logiko. Osrednji del naloge je predstavitev in analiza obstoječega samorazvijajočega sistema eGAUSS+. Sistem temelji na rojenju glede na vrednost pripadnostne funkcije, ki je določena z Gaussovo funkcijo. Roji sistema se združujejo glede na primerjavo prostornin prostora, ki ga pokrivajo. Metodo smo modificirali in ji dodali dodatni vhodni parameter za omejitev velikosti rojev. Analizirali smo vpliv posameznih vhodnih parametrov sistema na samo rojenje. Pokazali smo, da dodani parameter bistveno izboljša ponovljivost nenadzorovanega rojenja. Metoda je uporabna za primer identifikacije vhodno-izhodnega dinamičnega sistema in za primer nadzorovanega razvrščanja. Preizkusili smo sistem na problemu vhodno-izhodne identifikacije dveh nelinearnih dinamičnih sistemov. Določili smo tudi interval zaupanja napovedi in raziskali vpliv predhodnega filtriranja regresorjev na rojenje in identifikacijo. Delovanje sistema smo ocenili še na primeru nadzorovanega razvrščanja in rezultate primerjali s preostalimi razvrščevalniki.

Language:Slovenian
Keywords:samorazvijajoči se sistemi, tok podatkov, mehki sistemi
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Place of publishing:Ljubljana
Publisher:[U. Petković]
Year:2020
Number of pages:XVIII, 80 str.
PID:20.500.12556/RUL-122207 This link opens in a new window
UDC:681.5(043.3)
COBISS.SI-ID:69288963 This link opens in a new window
Publication date in RUL:27.11.2020
Views:1136
Downloads:139
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of fuzzy evolving system based on Gaussian clustering : magistrski študijski program druge stopnje Elektrotehnika
Abstract:
In this thesis, we presented the field of evolving systems with an emphasis on ones with fuzzy logic. The main focus of this work is a recently presented evolving eGAUSS+ system. The system is based on Gaussian clustering, where clusters are merged depending on the comparison between the sum of volumes of two clusters. The method was modified and a new input parameter for cluster volume control was added. We analysed the input parameters of the system, and evaluated their impact on clustering performance. We showed that the added input parameter significantly improves the repeatability of unsupervised clustering. This method can be used for input-output identification and supervised classification. The performance of input-output identification was evaluated on two different, nonlinear dynamical systems. We determined the confidence interval of model output and examined the effect of filtering of regressors on clustering and identification as well. The method performance was evaluated for supervised classification and the obtained results were compared with other classifiers.

Keywords:evolving systems, data streams, fuzzy systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back