izpis_h1_title_alt

Preference na Lorenzovih krivuljah in Ginijev koeficient : delo diplomskega seminarja
ID Malej, Mela (Author), ID Vidmar, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,81 MB)
MD5: 0F3B77DC78BAF105419D31451649D74C

Abstract
V diplomskem delu obravnavamo preference na Lorenzovih krivuljah in Ginijev koeficient. Najprej definiramo Lorenzove krivulje, ki jih uporabljamo za analizo neenakosti v porazdelitvah, in iz njih izpeljano mero neenakosti Ginijev koeficient. Na družino Lorenzovih krivulj vpeljemo preferenčne relacije, ki zadoščajo določenim pogojem ter razvrščajo Lorenzove krivulje. Izkaže se, da tako preferenčno relacijo lahko predstavimo z zveznim naraščajočim funkcionalom. Predstavimo tudi preferenčne funkcije, ki določajo posameznikove preference oziroma odpor do neenakosti. Pokažemo, da Lorenzove krivulje lahko razvrstimo glede na mero neenakosti Ginijev koeficient. Podrobneje obravnavamo še dominacije na Lorenzovih krivuljah, in sicer dominacijo prvega ter zgornjo in spodnjo dominacijo drugega reda za primer, ko se Lorenzove krivulje sekajo.

Language:Slovenian
Keywords:Lorenzova krivulja, preferenčna relacija, Ginijev koefcient
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-121518 This link opens in a new window
UDC:519.2
COBISS.SI-ID:58186243 This link opens in a new window
Publication date in RUL:13.10.2020
Views:2065
Downloads:150
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Preferences on Lorenz curves and the Gini coefficient
Abstract:
This thesis is concerned with preferences on Lorenz curves and the Gini coefficient. First, we define Lorenz curves which are used for analysing inequality of distributions and the Gini coefficient which is a measure of the inequality derived from Lorenz curve. On the family of Lorenz curves we introduce preference relations which satisfy certain conditions and rank Lorenz curves. It follows that such a preference relation can be represented by a continuous and increasing functional. We also introduce preference functions which assign an individual’s preferences or inequality aversion. It is demonstrated that Lorenz curves can be ranked according to the Gini coefficient. Furthermore, we discuss dominance criteria between Lorenz curves, namely first-degree dominance and second-degree upside and downside dominance in case of intersecting Lorenz curves.

Keywords:Lorenz curve, preference relation, Gini coefficient

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back