V disertaciji uvedemo in obravnavamo pojme relativno enakomerne zveznosti in krepke zveznosti glede na relativno enakomerno topologijo za polgrupe operatorjev na splošnih vektorskih mrežah. Z njihovo pomočjo obravnavamo polgrupe na prostorih, ki niso lokalno konveksni, kot so $L^p({\mathbb R})$ za $0 < p < 1$, in nekompletnih prostorih ${\rm Lip}({\mathbb R})$, ${\rm UC}({\mathbb R})$ in ${\rm C}_c({\mathbb R})$. Predstavimo tudi primere relativno enakomerno zveznih polgrup kot so Koopmanove polgrupe in Ornstein-Uhlenbeckova polgrupa. Predstavimo pojme relativno enakomerno zveznih, odvedljivih in integrabilnih funkcij na ${\mathbb R}_+$. Z njihovo pomočjo obravnavamo generatorje relativno enakomerno zveznih polgrup. Glavni rezultat je izrek tipa Hille-Yosida, ki nudi potrebne in zadostne pogoje, da je operator generator eksponentno urejenostno omejene, relativno enakomerno zvezne in pozitivne polgrupe.
|