Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Comparative study of first order optimizers for image classification using convolutional neural networks on histopathology images
ID
Kandel, Ibrahem
(
Avtor
),
ID
Castelli, Mauro
(
Avtor
),
ID
Popovič, Aleš
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(573,18 KB)
MD5: 20F7C8CC556791205BC64F77621C9439
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2313-433X/6/9/92
Galerija slik
Izvleček
The classification of histopathology images requires an experienced physician with years of experience to classify the histopathology images accurately. In this study, an algorithm was developed to assist physicians in classifying histopathology images; the algorithm receives the histopathology image as an input and produces the percentage of cancer presence. The primary classifier used in this algorithm is the convolutional neural network, which is a state-of-the-art classifier used in image classification as it can classify images without relying on the manual selection of features from each image. The main aim of this research is to improve the robustness of the classifier used by comparing six different first-order stochastic gradient-based optimizers to select the best for this particular dataset. The dataset used to train the classifier is the PatchCamelyon public dataset, which consists of 220,025 images to train the classifier; the dataset is composed of 60% positive images and 40% negative images, and 57,458 images to test its performance. The classifier was trained on 80% of the images and validated on the rest of 20% of the images; then, it was tested on the test set. The optimizers were evaluated based on their AUC of the ROC curve. The results show that the adaptative based optimizers achieved the highest results except for AdaGrad that achieved the lowest results.
Jezik:
Angleški jezik
Ključne besede:
image classification
,
convolutional neural networks
,
deep learning
,
medical images
,
transfer learning
,
optimizers
,
neuroscience
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
Št. strani:
17 str.
Številčenje:
Vol. 6, iss. 9, art. 92
PID:
20.500.12556/RUL-120547
UDK:
659.2:004
ISSN pri članku:
2313-433X
DOI:
10.3390/jimaging6090092
COBISS.SI-ID:
27679235
Datum objave v RUL:
22.09.2020
Število ogledov:
1137
Število prenosov:
254
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of imaging
Skrajšan naslov:
J. imaging
Založnik:
MDPI
ISSN:
2313-433X
COBISS.SI-ID:
525653017
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
08.09.2020
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
informatika
,
programiranje
,
prenos znanja
,
kognitivna znanost
Projekti
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Akronim:
GADgET
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0113/2019
Akronim:
AICE
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj