The bacterial infection with M.tuberculosis can cause tuberculosis, a disease that in most cases affects the lungs, but it can also affect other organs. Sometimes, it can also be deadly. The standard treatment uses antibacterial substances, specifically isoniazid or more substances at the same time (rifampicin, etambutol). For an effective treatment, it is necessary to take several medications simultaneously. Although the incidence and mortality of the disease lowered in the last years, this achievement is often overlooked because of increasing infections with multiple drug-resistant M. tuberculosis or an even worse form of resistance. Due to the resistance of strains to the existing methods of treatment, new forms of active substances for treatment of tuberculosis are being developed, these are direct inhibitors of enzyme InhA: tetrahydropyran derivatives, triclosan derivatives, pyridomycin, 4-hydroxy-2-pyridones, thiadiazoles. In the experimental part of our work, we focused on the effect of bioisosteric replacement of central phenyl group on the inhibitory activity of the tetrahydropiran type InhA inhibitors. With the help of ring equivalents, we replaced phenyl group with thiophene and thiazole. During this part of our work, we encountered a certain type of reactions, e.g. radical halogenation – bromination, reduction of nitriles to amines and coupling reactions. We synthesized two final compounds: compound 8: 5-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-N((4-(4-phenylthiazol-2-yl)tetrahydro-2Hpyran-4-yl)methyl)thiophene-2-carboxamide, and compound 16: 2-((3,5-dimethyl-1H-pyrazol-1yl)methyl)-N-((4-(4-phenylthiazol-2yl)tetrahydro-2H-pyran-4yl)methyl)thiazole-4-carboxamide. After the synthesis was completed, we analyzed the final compounds with nuclear magnetic resonance and high resolution mass spectrometry. We also checked the purity of the compounds with high performance liquid chomatography. The final compounds were tested on encyme InhA for the values of IC50. Based on the results of the analysis, tiophene proved to be the better replacement of phenyl. We also managed to prepare a purer tetrahydropyran derivative with thiophene than with thiazole and it showed a lower IC50 value than tiazol.
|