Details

Potencial strojnega učenja za identifikacijo napak v dinamiki rotorjev
ID Balkovec, Gregor (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,84 MB)
MD5: 425F82E0199D873250DAE6A7218F5C62

Abstract
Obravnavan je potencial strojnega učenja pri identifikaciji napak v ležajih. V začetku je predstavljeno stanje znanosti na tem področju, katere metode strojnega učenja se uporabljajo in njihova uspešnost. Nato so predstavljene osnove najpogostejših metod. Sledi implementacija teh metod na novem naboru podatkov, ki predstavlja bolj realne pogoje vgradnje ležajev. Na koncu so metode primerjane med seboj.

Language:Slovenian
Keywords:strojno učenje, umetna inteligenca, k-bližnjih sosedov, metoda podpornih vektorjev, večslojni perceptron, python, scikit-learn
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[G. Balkovec]
Year:2020
Number of pages:XXII, 44 str.
PID:20.500.12556/RUL-120212 This link opens in a new window
UDC:004.85:621.822(043.2)
COBISS.SI-ID:30104067 This link opens in a new window
Publication date in RUL:17.09.2020
Views:1241
Downloads:211
Metadata:XML DC-XML DC-RDF
:
BALKOVEC, Gregor, 2020, Potencial strojnega učenja za identifikacijo napak v dinamiki rotorjev [online]. Bachelor’s thesis. Ljubljana : G. Balkovec. [Accessed 2 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=120212
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The potential of machine learning for fault identification in rotor dynamics
Abstract:
The potential of machine learning for fault identification in bearings is discussed. Firstly, the current state in the field is presented, which machine learning methods are most commonly used and their applicability. Secondly, the basics of selected methods are presented. Finally, the implementation of selected methods on a bearing dataset is discussed. In the end, the methods are compared with each other.

Keywords:machine learning, artificial intelligence, k-nearest neighbor, support-vector machine, multilayer perceptron, python, scikit-learn

Similar documents

Similar works from RUL:
  1. Development of an extraction method for benzotriazole determination in soil
  2. Determination of non-polar benzotriazoles in the environment
  3. Optimization of extraction for alkylphenols from water samples
  4. Optimization of extraction for selected pollutants from microplastics in water samples
  5. Clean-up of solid samples extracts with HFME
Similar works from other Slovenian collections:
  1. Primerjava lastnosti HPLC kolon polnjenih z različnimi nosilci
  2. Comparison of the properties of HPLC columns for the analysis of pharmacological substances in plasma

Back