izpis_h1_title_alt

Hitro množenje matrik : delo diplomskega seminarja
ID Marinko, Matej (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (627,16 KB)
MD5: E81A320D11990ABA4E12EB67A71C64F6

Abstract
Množenje matrik je v linearni algebri preprosta operacija, ki se pogosto pojavlja v rešitvah najrazličnejših problemov. Prav zato je bilo v iskanje hitrih algoritmov za množenje matrik vloženega že veliko dela. V diplomskem delu definiramo problem iskanja zgornje meje eksponenta matričnega množenja in razvijemo teorijo ranga in mejnega ranga bilinearnih preslikav. Predstavimo več algoritmov za hitro množenje matrik, ki slonijo na tej teoriji. Izbrane algoritme tudi implementiramo, jih primerjamo med seboj in ocenimo njihovo uporabnost v praksi.

Language:Slovenian
Keywords:množenje matrik, eksponent matričnega množenja, rang tenzorjev, mejni rang
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120183 This link opens in a new window
UDC:004
COBISS.SI-ID:58244355 This link opens in a new window
Publication date in RUL:17.09.2020
Views:1158
Downloads:184
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Fast matrix multiplication
Abstract:
Matrix multiplication is one of the most basic operations in linear algebra and thus very common in various scientific disciplines. Consequently, the computation complexity of matrix multiplication has been extensively studied. In this work, we define a problem of finding the upper bound for the exponent of matrix multiplication and present the theory of rank and border rank of bilinear maps. We describe multiple fast matrix multiplication algorithms based on this theory. In the end, we implement some selected algorithms, compare them, and discuss their value in practical applications.

Keywords:matrix multiplication, exponent of matrix multiplication, tensor rank, border rank

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back