Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Aksiomatska nestandardna analiza : delo diplomskega seminarja
ID
Štampar, Kevin
(
Author
),
ID
Kandić, Marko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(240,90 KB)
MD5: 34E7E9446435D8C4BC5D7E5E0B25618F
Image galllery
Abstract
Cilj diplomskega dela je z uvedbo infinitezemalnih števil predstaviti drugačen pristop h klasični analizi. Infinitezimalna števila uvedemo s pomočjo petih aksiomov. Največji poudarek je na principu prenosa, ki povezuje trditve, ki veljajo nad hiperrealnimi števili, s trditvami, ki veljajo nad realnimi števili. Skozi diplomsko delo dokazujemo, da so definicije iz nestandardne analize ekvivalentne tistim iz klasične analize, nato pa nove definicije uporabimo za dokaze izrekov iz klasične analize. Zaradi obširnosti klasične analize, se v diplomskem delu omejimo na koncepte zveznosti, limite, odvoda in kompaktnosti.
Language:
Slovenian
Keywords:
infinitezimalno število
,
princip prenosa
,
standardni del
,
hiperrealna števila
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2020
PID:
20.500.12556/RUL-120181
UDC:
517
COBISS.SI-ID:
58753027
Publication date in RUL:
17.09.2020
Views:
1184
Downloads:
137
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠTAMPAR, Kevin, 2020,
Aksiomatska nestandardna analiza : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=120181
Copy citation
Share:
Secondary language
Language:
English
Title:
Non-standard analysis, axiomatically
Abstract:
In the thesis we introduce infinitesimals to present a new approach to classical analysis. We do so by introducing a set of five axioms. The emphasis is on the transfer axiom which helps us transfer theorems from nonstandard analysis to classical analysis. Throughout the thesis we show that the definitions in non-standard analysis are equivalent to those from classical analysis, and use non-standard definitions to prove theorems from classical analysis. Due to the large reach of classical analysis, we limit ourselves to concepts of continuity, limits, differentiation and compactness.
Keywords:
infinitesimal
,
transfer axiom
,
standard part
,
hyperreal number
Similar documents
Similar works from RUL:
Antioxidant activity of germinated spelt
Germinated buckwheat
Podaljševanje trajnosti kruha z mikrovalovi
Determination of selected physico-chemical parameters of buckwheat honey
Antimicrobial activity of phenolic extracts from grape pomace
Similar works from other Slovenian collections:
Genetic analysis of candidate area on chromosome 1 in slovenian patients with rheumatoid arthritis
INFLUENCE OF DIET ON THE QUALITY OF LIFE OF PATIENTS WITH RHEUMATOID ARTHRITIS
Quality of life of the patients with rheumatoid arthritis on biological therapy
Treatment of pain in patients with rheumatoid arthritis
Nursing care of patients with rheumatoid arthritis
Back