izpis_h1_title_alt

Konstrukcija gibanja kamere z uporabo Pitagorejskih krivulj : delo diplomskega seminarja
ID Oražem, Maruša (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,93 MB)
MD5: 3217337EB33F0E33B92AA05112C6C91F

Abstract
V delu obravnavamo konstrukcije gibanja kamere okoli fiksnega objekta. Želimo si, da so gibanja opisana z racionalnimi krivuljami. Predstavljeno je, kako to naredimo z uporabo P-krivulj in kvaternionov. Opisani so Bernsteinovi bazni polinomi, pomen kontrolnih točk ter kontrolnega poligona in primerjava zapisa krivulje v Bernsteinovi bazi in standardni bazi. Definirana so prikrojena in usmerjena ogrodja ter razlika med njimi, opisana pa so tudi rotacijsko minimizirajoča ogrodja in pogoji za njihovo konstrukcijo. V zaključku je predstavljen preprost interpolacijski problem za konstrukcijo P-krivulje, ki interpolira začetno in končno točko in se jo da opremiti z rotacijsko minimizirajočim usmerjenim ogrodjem. Rezultati so prikazani na več numeričnih primerih.

Language:Slovenian
Keywords:Bernsteinovi polinomi, P-krivulja, ortonormirano ogrodje, prikrojeno ogrodje, usmerjeno ogrodje, konstrukcija gibanja kamere
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120179 This link opens in a new window
UDC:519.6
COBISS.SI-ID:58344963 This link opens in a new window
Publication date in RUL:17.09.2020
Views:889
Downloads:146
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Construction of camera motion with Pitagorean curves
Abstract:
The present thesis deals with the construction of camera movements around a fixed object. The movements are described by means of rational curves. The thesis presents how that is performed by using P-curves and quaternions. It describes Bernstein basis polynomials, the meaning of control points and the control polygon, and also the comparison of curve representation in Bernstein basis and in standard basis. Adapted and directed frames are defined as well as the difference between them. In addition, rotation minimizing frames and the conditions for their constructions are described. In conclusion, a simple interpolation problem of a P-curve construction is presented, which interpolates the first and the last point and can be equipped with a rotation minimizing directed frame. The results are shown in several numerical examples.

Keywords:Bernstein polynomials, P-curve, orthonormal frame, adapted frame, directed frame, construction of camera motion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back