Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Mandelbrotova množica in algoritem DEM : delo diplomskega seminarja
ID
Ševerkar, Nejc
(
Author
),
ID
Kuzman, Uroš
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(13,02 MB)
MD5: 2E233753F4113CC68429B4C8B45942DB
ZIP - Appendix,
Download
(3,27 KB)
MD5: A65A778021917CCE7D4D7B4321A3777C
Image galllery
Abstract
V nalogi je predstavljen algoritem DEM (Distance estimation method), ki omogoča učinkovito grafično prikazovanje fraktaličnih množic. Algoritem sodi na področje kompleksne dinamike, ki preučuje obnašanje iteracij kompleksnih preslikav. Začetek te veje matematike sega v obdobje med leti 1917 in 1919, ko so bile objavljene prve raziskave na temo iteracij kompleksnih racionalnih funkcij ene spremenljivke, s strani francoskih matematikov Gastona Juliaja in Pierre Fatouja. Sledilo je obdobje daljšega mirovanja teorije, ki pa ga je prekinil razvoj numerične matematike in posledično tudi fraktalne geometrije. Tako je področje znova postalo zelo popularno tako med matematiki kot med umetniki. V središču naloge bo eden izmed najbolj znanih objektov te teorije, tako imenovana Mandelbrotova množica. Gre za podmnožico kompleksne ravnine, ki na svojevrsten način ilustrira družino kvadratnih polinomov s povezano Juliajevo množico. V nalogi bomo podali njeno definicijo in dokazali nekaj njenih topoloških lastnosti. V ospredju bo dokaz njene povezanosti, ki nam bo v zadnjem poglavju omogočil izpeljavo algoritma DEM, s katerim bomo to množico tudi učinkovito grafično prikazali.
Language:
Slovenian
Keywords:
kompleksna dinamika
,
polinomi
,
Juliajeve množice
,
Mandelbrotova množica
,
algoritem
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2020
PID:
20.500.12556/RUL-120178
UDC:
517
COBISS.SI-ID:
58367491
Publication date in RUL:
17.09.2020
Views:
2313
Downloads:
274
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠEVERKAR, Nejc, 2020,
Mandelbrotova množica in algoritem DEM : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=120178
Copy citation
Share:
Secondary language
Language:
English
Title:
The Mandelbrot set and the DEM algorithm
Abstract:
In this paper we study the DEM (Distance estimation method) algorithm, which enables effective graphical representation of fractal sets. The algorithm is based on the theory of complex dynamics, which studies complex function's behavior under repeated iterations. This branch of mathematics had its beginnings between the years of 1917 and 1919, when the first research about iteration of complex rational function of one variable was published by French mathematicians Gaston Julia and Pierre Fatou. There followed multiple years of inactivity, until it was disrupted by the progress in the field of computer science and hence fractal geometry. Thus the field became immensely popular amidst mathematicians and artists alike. In the midst of this paper we will study one of the most recognizable objects of the theory, the so called Mandelbrot set. The name belongs to a subset of the complex plane, which in its own way illustrates the family of quadratic polynomials with a connected Julia set. We will define this set and prove some of its topological characteristics. The main proof being its connectedness, which will allow us to derive the DEM algorithm in the last section, using which we will be able to effectively represent the set graphically.
Keywords:
complex dynamics
,
polynomials
,
Julia sets
,
the Mandelbrot set
,
algorithm
Similar documents
Similar works from RUL:
Analysis of hydrodynamic conditions near bottom hinged gates on a side weir
Seismic stress test with incomplete building data
Application of reinforcement learning methods for optimization of traffic control on arterial roads
Fire analysis of two-layered composite planar structures
Fluvial transport of suspended sediments related to other hydrologic processes
Similar works from other Slovenian collections:
Use of advanced oxidation processes for decolorization of wastewater
EXPERIMENTAL DESIGN FOR DECOLORATION OF TEXTILE WASTE WATERS USING ADVANCED OXIDATION PROCESS H2O2/UV
Reactive dye decolorization using combined ultrasound/H2O2
Decolation of texile waste waters with advanced oxidation H2O2/abd thermal process
NITRATE REMOVAL FROM DRINKING WATER USING FIBRES
Back