izpis_h1_title_alt

Struktura končno razsežnih algeber : delo diplomskega seminarja
ID Strmčnik, Jaka (Author), ID Brešar, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (490,05 KB)
MD5: 4B2C271BA840326FE90CE30A8E5C61BD

Abstract
Besedilo obravnava osnovne vrste kolobarjev, kot so na primer enostavni kolobarji, prakolobarji, polprakolobarji, itd. Sproti se rezultate analogno prilagaja za algebre, saj je glavni cilj besedila dokazati Wedderburnov strukturni izrek za končno razsežne algebre. Precejšen poudarek je na pojmu modula. Potreben je tako za dokaze pomembnih rezultatov, kot tudi za vpeljavo pojma primitivnega kolobarja, ki je ključen pri formulaciji Jacobsonovega izreka o gostoti, na katerem sloni dokaz Wedderburnovega strukturnega izreka.

Language:Slovenian
Keywords:algebra, anihilator modula, gost kolobar linearnih operatorjev vektorskega prostora, nasprotni kolobar, nilpotenten ideal, $K$-modul, polprakolobar, prakolobar, primitiven kolobar, vektorski prostor nad obsegom
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120125 This link opens in a new window
UDC:512
COBISS.SI-ID:58838787 This link opens in a new window
Publication date in RUL:16.09.2020
Views:1390
Downloads:126
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Structure of finite dimensional algebras
Abstract:
This work deals with basic types of rings, such as simple rings, prime and semiprime rings, etc. Along the way, the results are being adjusted to hold also for algebras, since the main goal of the thesis is to prove Wedderburn’s structure theorem for finite dimensional algebras. The concept of a module is emphasised in the text. It is often used when proving some of the important results, and, moreover it plays a key role in introducing the notion of a primitive ring. The latter is used in the formulation of Jacobson Density Theorem, which provides the necessary tool to prove Wedderburn’s structure theorem.

Keywords:algebra, annihilator of a module, dense ring of linear operators of a vector space, ideal, opposite ring, nilpotent ideal, $K$-module, semiprime ring, prime ring, primitive ring, vector space over a division ring

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back