izpis_h1_title_alt

Aproksimacija mnogoterosti z mehkimi simplicialnimi množicami in njena implementacija v algoritmu UMAP
ID Urbančič, Živa (Author), ID Mramor-Kosta, Neža (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,59 MB)
MD5: 127636A84741EE0601BD4C0F692E738D

Abstract
Motivacija zaključnega dela izvira iz algoritma UMAP (ang. "Uniform Manifold Approximation and Projection") za zmanjševanje dimenzij, ki so ga leta 2018 v svojem članku predstavili L. McInnes, J. Healy in J. Melville. Obravnavali bomo njegovo interpretacijo kot poseben primer uporabe mehkih simplicialnih množic za aproksimacijo mnogoterosti, ki ga ločuje od drugih metod s področja učenja mnogoterosti. Do definicije mehkih simplicialnih množic bomo prišli s postopnim posploševanjem pojma simplicialnega kompleksa, pri čemer bomo vseskozi uporabljali jezik teorije kategorij. Aproksimacijo mnogoterosti podatkov bomo opisali s posplošitvijo funktorjev singularne množice in geometrijske realizacije za kategorijo omejenih mehkih simplicialnih množic ${\cal F}in$-$s{\cal F}uzz$ in kategorijo končnih razširjenih psevdometričnih prostorov ${\cal F}in{\cal EPM}et$ ter predstavili njeno implementacijo v algoritmu UMAP.

Language:Slovenian
Keywords:aproksimacija mnogoterosti, mehke simplicialne množice, zmanjševanje dimenzij, teorija kategorij, topološka analiza podatkov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120124 This link opens in a new window
COBISS.SI-ID:28387587 This link opens in a new window
Publication date in RUL:16.09.2020
Views:1106
Downloads:204
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Manifold Approximation with Fuzzy Simplicial Sets and its Implementation in the UMAP Algorithm
Abstract:
The motivation of the work stems from the dimensionality reduction algorithm UMAP (``Uniform Manifold Approximation and Projection'' Algorithm) which was introduced in 2018 by L. McInnes, J. Healy and J. Melville. We will address its interpretation as a special case of manifold approximation using fuzzy simplicial sets, which sets it appart from the other manifold learning methods. The definition of a fuzzy simplicial set will arise by gradual generalization of simplicial complexes, using the language of category theory. By generalization of the singular set and geometric realization functors to the categoriess ${\cal F}in$-$s{\cal F}uzz$ of bounded fuzzy simplicial sets and ${\cal F}in{\cal EPM}et$ of finite extended pseudo-metric spaces we will describe the manifold approximation in a functorial way and discuss its implementation in the UMAP algorithm.

Keywords:manifold approximation, fuzzy simplicial sets, dimensionality reduction, category theory, topological data analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back