izpis_h1_title_alt

Skalabilna uporaba modelov strojnega učenja v oblaku
ID PETROVIĆ, BOGDAN (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,42 MB)
MD5: C1AACB3F8A2F92312C93805131BBD065

Abstract
Računalništvu v oblaku je v zadnjem času posvečene veliko pozornosti zaradi njegovega potenciala, saj omogoča prilagodljive rešitve, kot so podatkovne baze ali programska oprema na zahtevo. Med razvojem katere koli vrste aplikacije je potrebno vnaprej premisliti o skalabilnosti, prilagodljivosti in oceniti stroške. V diplomskem delu smo preizkusili različne načine vzpostavitve storitve API za uporabo vnaprej naučenega modela strojnega učenja, pri čemer smo uporabili vsebnike in tehnologije za orkestracijo, testirali različne ponudnike oblačnih rešitev ter jih primerjali med sabo. Poskusili smo tudi oceniti stroške vzpostavitve glede na potrebno infrastrukturo za doseganje zadovoljivega odzivnega časa. Kljub temu da je Kubernetes najpogostejša rešitev za orkestracijo vsebnikov, smo pokazali da je AWS ECS dobra alternativa. Pri oblačni platformi Heroku nimamo veliko fleksibilnosti, vendar je vzpostava zelo enostavna.

Language:Slovenian
Keywords:računalništvo v oblaku, strojno učenje, vsebniki, AWS
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-120054 This link opens in a new window
COBISS.SI-ID:31217411 This link opens in a new window
Publication date in RUL:15.09.2020
Views:1513
Downloads:254
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Scalable useage of machine learning models in the cloud
Abstract:
In recent times, cloud computing is attracting a lot of attention because of its' services such as servers, databases or software on premise. During the development of an application of any type, scalability, flexibility and cost estimates must be considered in advance. In this diploma thesis, we experimented with different methods for establishing an API service for using a pre-trained machine learning model, whereby we used use containers and technologies for container orchestration, test different cloud providers, and compare them to each other. We tried to estimate the costs of the establishment of a scalable sistem depending of infrastructure needed for achieving a satisfactory response time. Despite Kubernetes being the most often used solution for container orchestration, we have shown that AWS ECS is a good alternative. On Heroku cloud platform, we don't have as much flexibility, however the establishment is very simple.

Keywords:cloud computing, machine learning, containers, AWS

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back