izpis_h1_title_alt

Študija vpliva mehanskih lastnosti na obdelovalno število pri rezanju z abrazivnim vodnim curkom z metodo strojnega učenja
ID Hovnik, Blaž (Author), ID Lebar, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Valentinčič, Joško (Comentor)

.pdfPDF - Presentation file, Download (2,19 MB)
MD5: D51A69614A83B86D955467192856B82E

Abstract
Zaključna naloga obravnava korelacijo mehanskih lastnosti materialov z vrednostjo obdelovalnega števila pri rezanju z abrazivnim vodnim curkom (AVC). To povezavo smo raziskali s pristopom strojnega učenja. V teoretičnem delu zaključne naloge smo predstavili obdelavo z AVC. Opisani so načini generiranja AVC, abrazivna sredstva, fizikalni princip odnašanja materiala in empirični model za rezanje z AVC. Podrobneje so predstavljene nekatere mehanske lastnosti materialov, ki imajo vpliv na vrednost obdelovalnega števila. V glavnem delu zaključne naloge je predstavljeno strojno učenje in uporaba regresijskih dreves v programskem orodju Matlab. V praktičnem delu so rezultati podani s pomočjo grafov odstopanja napovedi modela regresijskega drevesa od pravih vrednosti. S pristopom strojnega učenja smo prišli do ugotovitve, da je najvplivnejši vhodni parameter pri napovedi obdelovalnega števila natezna trdnost kateri sledi modul elastičnosti.

Language:Slovenian
Keywords:abrazivni vodni curek, mehanske lastnosti materialov, obdelovalno število, strojno učenje, regresijska drevesa
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[B. Hovnik]
Year:2020
Number of pages:XIV, 34 f.
PID:20.500.12556/RUL-120035 This link opens in a new window
UDC:621.9.04:620.17:004.85(043.2)
COBISS.SI-ID:31483139 This link opens in a new window
Publication date in RUL:15.09.2020
Views:1209
Downloads:176
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Study of the influence of mechanical properties on machinability number when cutting with abrasive water jet using the machine learning method
Abstract:
This thesis addresses the correlation of the mechanical properties of materials with the value of the machinability number when cutting with an abrasive water jet (AWJ) technology. This connection was researched by machine learning approach. In the theoretical part, the AWJ process is presented. The methods of generating the AWJ, abrasives, as well as the physical principle of removing material and the empirical model for cutting with the AWJ are described. Some mechanical properties of materials that affect the value of the machinability number are presented in more detail. In the main part, machine learning and the use of regression trees in the Matlab software tool are presented. In the practical part, the results are shown through graphs that display the deviation of the regression tree forecast model from the true value. With the machine learning approach it was found that the tensile strength is the most influential input parameter in connection with the machinability number forecast, which is followed by the elastic modulus parameter.

Keywords:abrasive water jet, mechanical properties of materials, machinability number, machine learning, regression trees

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back