izpis_h1_title_alt

Izboljšava segmentacije multispektralnih slik z upoštevanjem negotovosti oznak
ID Bogataj, Mark (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Račič, Matej (Comentor)

.pdfPDF - Presentation file, Download (3,89 MB)
MD5: 5D5439CC6C0E0322B51DB573B0A4B168

Abstract
V okviru diplomske naloge analiziramo vpliv šumnih podatkov na učenje modelov za klasifikacijo. Osredotočimo se na klasifikacijo poljščin iz multispektralnih satelitskih slik. Obstoječo arhitekturo nevronskih mrež za klasifikacijo poljščin prilagodimo, da se lahko uči z negotovimi oznakami razredov, ki izhajajo iz pogostih mejnih celic površin, ki vsebujejo dva ali več razredov poljščin. Metodo smo ovrednotili na podatkovni zbirki, ki vključuje celotno površje Slovenije, obravnavanje negotovosti v oznakah klasifikacijsko točnost izboljša za 5\%, kar odpira nove možnosti za bolj robustno učenje napovednih modelov na podobnih problemih.

Language:Slovenian
Keywords:globoko učenje, Sentinel-2, razpoznavanje poljščin, klasifikacija površja
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119838 This link opens in a new window
COBISS.SI-ID:30824195 This link opens in a new window
Publication date in RUL:11.09.2020
Views:1176
Downloads:230
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Multispectral imagery segmentation improvement using ambiguous labels
Abstract:
In the thesis, we analyzed the impact of noise data on the learning of classification models. We focused on the classification of crops from multispectral satellite images. The existing neural network architecture for crop classification is adapted so that it can be learned with uncertain class designations derived from common surface boundary cells containing two or more crop classes. The method was evaluated on a dataset that includes the entire surface of Slovenia, the evaluation of uncertainty in labels improves the classification accuracy by 5\%, which opens new possibilities for more robust learning of predictive models on similar problems.

Keywords:deep learning, Sentinel-2, crop classification, land use and land cover classification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back