izpis_h1_title_alt

Spodbujevalno učenje na problemu igre Pacman
ID CEROVAC, DENI (Avtor), ID Sadikov, Aleksander (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,89 MB)
MD5: F4E85701C0FF0E1548B3A6B9F87F2AB7

Izvleček
Diplomsko delo Spodbujevalno učenje na problemu igre Pacman prikazuje mojo motivacijo, ki me je pritegnila k izbiri takšnega projekta. V diplomskem delu smo opravili teoretičen pregled delovanja algoritmov na principu spodbujevalnega učenja, kjer smo tudi pregledali teoretično ozadje algoritmov Q-učenje in globoko Q-učenje, katera smo tudi implementirali in uporabili na igri Pacman. Naš pristop je bil poseben zaradi primerjave uspešnosti algoritmov v okolju, kjer imata algoritma zelo omejeno gibanje in vpliv na delovanje samega akterja. Glede na pridobljeno znanje smo v celoti projekta implementirali oba algoritma, ki sta se učila na dani igri in nam vrnila zanimive rezultate. Med implementacijo smo doživeli veliko izzivov, nekatere zabavne, nekatere pa ne, katere smo uspešno premagali. Na podlagi pridobljenih rezultatov smo ugotovili, da sta se kljub omejenem gibanju in vplivanju na karakterjevo obnašanje algoritma odrezala podobno in v nekaterih primerih bistveno boljše kot amaterski igralci igre Pacman.

Jezik:Slovenski jezik
Ključne besede:nevronske mreže, Q-učenje, globoko Q-učenje, strojno učenje, spodbujevalno učenje.
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2020
PID:20.500.12556/RUL-119830 Povezava se odpre v novem oknu
COBISS.SI-ID:30969091 Povezava se odpre v novem oknu
Datum objave v RUL:11.09.2020
Število ogledov:1473
Število prenosov:237
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Pacman implementation using reinforcement learning
Izvleček:
Bachelors project Pacman implementation using reinforcement learning, shows the reason and motivation that made me choose this project. In bachelors project we went over theoretical principals of Reinforcement learning algorithms, where we explained theoretical background of Q-learning and Deep Q-learning which we implemented and used on a game Pacman. Our approach was special because of our comparison of success between these two algorithms which were implemented on a game with restricted ability to impact on the movement and decision of our agent. Based on the accumulated knowledge in the course of our project we implemented both algorithms, that when finished returned some interesting results. Throughout our implementation we experienced a lot of challenges, some more fun than others, but in the end we successfully resolved all of them. Based on gathered results we found out that despite restricted movement of our agent, the algorithms were in average approximately as good or in some cases drastically better than average amateur Pacman players.

Ključne besede:neural networks, Q-learning, deep Q-learning, machine learning, reinforcement learning.

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj