Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Algoritmi za igranje potezne večakcijske miselne igre Less
ID
Magerl, Žan
(
Author
),
ID
Mihelič, Jurij
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(384,76 KB)
MD5: 4133C3446424B0983747693B8FF1520F
Image galllery
Abstract
V tem delu predstavimo izvedbo in rezultate različnih algoritmov in metod za igranje večakcijske igre Less. Uporabili smo minimaks algoritem, njegovo optimizacijo z alfa-beta rezanjem in drevesno preiskovanje Monte-Carlo. Vse algoritme smo med seboj pomerili v dvobojih in nato analizirali rezultate in vpliv različnih vrednosti vhodnih parametrov algoritmov. Zaradi velikega vejitvenega faktorja igre Less se je drevesno preiskovanje Monte-Carlo izkazalo kot primernejše za igranje igre od minimaks algoritma. V nadaljni analizi smo ugotovili, da na izide iger ne vpliva prednost prve poteze, močno pa vpliva začetna postavitev igralnega polja. Rezultati so pokazali, da najboljši zasnovani algoritmi premagajo priložnostnega igralca igre Less.
Language:
Slovenian
Keywords:
algoritem minimaks
,
alfa-beta rezanje
,
drevesno preiskovanje Monte-Carlo
,
analiza
,
evalvacijska funkcija
,
igra Less
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-119413
COBISS.SI-ID:
28907779
Publication date in RUL:
08.09.2020
Views:
2291
Downloads:
258
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MAGERL, Žan, 2020,
Algoritmi za igranje potezne večakcijske miselne igre Less
[online]. Bachelor’s thesis. [Accessed 3 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=119413
Copy citation
Share:
Secondary language
Language:
English
Title:
Algorithms for playing turn-based multi-action mind game Less
Abstract:
In this thesis we present implementation and results from different algorithms and methods for playing multi-action game Less. We have used minimax algorithm, its optimization with alpha-beta pruning and Monte-Carlo tree search. All algorithms have played games between themselves and then we have analyzed results and the influence of different input parameters. Due to the huge branching factor of game Less, the Monte-Carlo tree search has proven to be better choice than minimax algorithm. In the following analysis we have discovered, that the first move advantage does not play role in the outcome of the game, while the initial setting of the tiles does. Results have shown that best designed algorithms can beat occasional player of game Less.
Keywords:
algorithm minimax
,
alpha-beta pruning
,
Monte-Carlo tree search
,
analysis
,
evaluation function
,
game Less
Similar documents
Similar works from RUL:
Numerical simulation of aluminium solidification at die casting process
Karakterizacija zlitine AlSi7Mg0,3
Optimization of machining parameters of face milling on a thin-walled aluminium casting
Use of high pressure die casting simulations for analyzing casting defects
Influence of laser surface melting of aluminium alloys on surface integrity
Similar works from other Slovenian collections:
Preizkusi obdelovalnosti aluminijevih zlitin
Technology design tools for pressure casting aluminum alloys
The annual maintenance plan for the aluminium die casting machine
Posodobitev razreza palic na iztiskovalni liniji aluminijevih zlitin
Reinženiring proizvodnje volanskega sklopa
Back