izpis_h1_title_alt

Algoritmi za igranje potezne večakcijske miselne igre Less
ID Magerl, Žan (Author), ID Mihelič, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (384,76 KB)
MD5: 4133C3446424B0983747693B8FF1520F

Abstract
V tem delu predstavimo izvedbo in rezultate različnih algoritmov in metod za igranje večakcijske igre Less. Uporabili smo minimaks algoritem, njegovo optimizacijo z alfa-beta rezanjem in drevesno preiskovanje Monte-Carlo. Vse algoritme smo med seboj pomerili v dvobojih in nato analizirali rezultate in vpliv različnih vrednosti vhodnih parametrov algoritmov. Zaradi velikega vejitvenega faktorja igre Less se je drevesno preiskovanje Monte-Carlo izkazalo kot primernejše za igranje igre od minimaks algoritma. V nadaljni analizi smo ugotovili, da na izide iger ne vpliva prednost prve poteze, močno pa vpliva začetna postavitev igralnega polja. Rezultati so pokazali, da najboljši zasnovani algoritmi premagajo priložnostnega igralca igre Less.

Language:Slovenian
Keywords:algoritem minimaks, alfa-beta rezanje, drevesno preiskovanje Monte-Carlo, analiza, evalvacijska funkcija, igra Less
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119413 This link opens in a new window
COBISS.SI-ID:28907779 This link opens in a new window
Publication date in RUL:08.09.2020
Views:2054
Downloads:246
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algorithms for playing turn-based multi-action mind game Less
Abstract:
In this thesis we present implementation and results from different algorithms and methods for playing multi-action game Less. We have used minimax algorithm, its optimization with alpha-beta pruning and Monte-Carlo tree search. All algorithms have played games between themselves and then we have analyzed results and the influence of different input parameters. Due to the huge branching factor of game Less, the Monte-Carlo tree search has proven to be better choice than minimax algorithm. In the following analysis we have discovered, that the first move advantage does not play role in the outcome of the game, while the initial setting of the tiles does. Results have shown that best designed algorithms can beat occasional player of game Less.

Keywords:algorithm minimax, alpha-beta pruning, Monte-Carlo tree search, analysis, evaluation function, game Less

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back