izpis_h1_title_alt

Adaptation of texts to context
ID ŽONTAR, LUKA (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,31 MB)
MD5: 75B4D0AF21CD2C9E543536A542C2BC09

Abstract
In this thesis we try to develop a methodology that can adapt texts to target publication types using summarization, natural language generation and paraphrasing. The solution is based on key text characteristics that describe different publication types. To examine types such as social media posts, newspaper articles, research articles and official statements, we use three distinct text evaluation metrics: length, text polarity and readability. While altering key text evaluation metrics, we mostly focus on length due to much research that was done in this field (either with summarization or natural language generation). Using paraphrasing we will try to adjust text readability and polarity that describes reader's negative or positive orientation towards the topic. The process of text adaptation will be implemented iteratively. The developed methodology will automatize writing articles that are based on existing articles. The more crucial contribution of this thesis is that we help to gain access of harder works to those that cannot understand the origin texts.

Language:English
Keywords:text adaptation, context-aware, artificial intelligence, text summarization, natural language processing
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119412 This link opens in a new window
COBISS.SI-ID:28976643 This link opens in a new window
Publication date in RUL:08.09.2020
Views:1973
Downloads:201
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Prilagoditev besedil kontekstu objave
Abstract:
V tem diplomskem delu skušamo razviti metodologijo, ki bo znala s pomočjo povzemanja, generiranja naravnega jezika in parafraziranja prilagoditi be\-se\-di\-lo ciljnemu kontekstu objave. Za rešitev problema se najprej osredotočimo na ključne karakteristike, ki določajo obravnavane tipe objav. Za obravnavo štirih razlilčnih tipov, ki so objave na socialnih omrežjih, novice, znanstveni članki in uradne izjave, uporabimo tri karakteristike: dolžino, polarnost besedila in berljivost. Pri spreminjanju ključnih karakteristik se osredotočimo predvsem na dolžino, saj se veliko raziskav nanaša na prilagajanje teksta, bodisi s povzemanjem ali generiranjem naravnega jezika. S pomočjo parafraziranja bomo skušali prilagajati berljivost in polarnost teksta, ki priča o negativni oziroma pozitivni naravnanosti bralca k besedilu. Proces prilagajanja besedil bo potekal iterativno. Razvita metodologija bo avtomatizirala proces pisanja člankov, ki temeljijo na obstoječih delih. Še bolj pomembno pa je, da s tem omogočimo dostop zahtevnejših del tistim, ki jih v prvotni obliki ne razumejo.

Keywords:prilagajanje besedil, kontekstno-odvisen, umetna inteligenca, procesiranje naravnega jezika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back