Piezoelectric materials are widely used in electromechanical applications such as sensors, actuators and ultrasonic transducers. Since most commercial piezoelectric elements consist of toxic lead, such as the widely used Pb(Zr,Ti)O3 ceramics, the research is strongly focused on the development of lead-free materials that would replace the lead-based counterparts. In addition, recent research has been focused on the development of lead-free materials that can withstand high temperatures, where bismuth ferrite, BiFeO3, is particularly promising because of its extremely high Curie temperature. However, in order to enhance the poor piezoelectric properties and suppress the high conductivity of pure bismuth ferrite, a commonly adopted strategy is to create solid solutions of bismuth ferrite with other perovskites. The xBiFeO3-(1-x)SrTiO3 with the content of bismuth ferrite close to the morphotropic phase boundary region is one of such compositions showing characteristic piezoelectric and ferroelectric properties along with relaxor behavior, evidenced by a frequency dependent peak in the dielectric spectrum. Since the relaxor properties are strongly correlated with the domain structure and the characteristic polar nanodomains, this work focuses on the domain structure analysis of the xBiFeO3-(1-x)SrTiO3 ceramics in a wide compositional range (0,575 ≤ x ≤ 0,70).
The domain structure of the studied compositions revealed strong dependency on the composition, as well as on the applied external electric field. With the increase of the strontium titanate content, the domains become smaller due to the so-called chemical disorder in the crystal lattice and the formation of a relaxor phase. The composition with the lowest BFO content has a fine nano-domain structure. On the contrary, the composition with the highest BFO content has larger lamellar domains with a herring bone structure. In this composition we can observe a field induced reorganization from a fine domain structure to organized domain structure with lamellar domains. After poling, an increase of the nonlinear dielectric response for BFO-poor compositions was observed, and conversely, a decrease in the nonlinear response for BFO-rich compositions. There was no clear correlation between this response and electric-field induced changes within the domain structure. We explain the nonlinear response in poled samples to defect redistribution in the material, which define the energy potential for domain-wall motion.
|