izpis_h1_title_alt

Primerjava računskih modelov za napovedovanje širjenja bolezni
ID BOSIL, ROK (Avtor), ID Demšar, Jure (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (502,76 KB)
MD5: A4C709222656C50619ECEDCCFB459D50

Izvleček
Konec leta 2019 se je na Kitajskem pojavil nov virus. Virus so poimenovali SARS-CoV-2 (angl. severe acute respiratory syndrome coronavirus 2) in bolezen, ki jo ta povzroča COVID-19. Znaki bolezni so vročina, slabo počutje, utrujenost, bolezen se lahko razvije v pljučnico in vodi celo v smrt. Zaradi hitrega širjenja virusa, je bil COVID-19 razglašen kot pandemija. Cilj diplomske naloge je primerjava modelov, ki napovedujejo širjenje virusa. Modeli so bili zgrajeni na podatkih pridobljeni iz univerze Johns Hopkins. Za modeliranje smo uporabili linearno regresijo, nelinearno regresijo z logistično funkcijo in model SIR. Glede na dobljene rezultate smo ugotovili, da sta najboljša modela linearna regresija, kjer smo napovedovali samo s podatki prejšnjega tedna in nelinearna regresija z logistično funkcijo.

Jezik:Slovenski jezik
Ključne besede:COVID-19, napovedovanje, regresija, model SIR
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
PID:20.500.12556/RUL-119307 Povezava se odpre v novem oknu
COBISS.SI-ID:28534531 Povezava se odpre v novem oknu
Datum objave v RUL:07.09.2020
Število ogledov:1411
Število prenosov:223
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Comparison of computational models for predicting disease spread
Izvleček:
At the end of 2019 a new virus appeared in China. The virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the disease it causes was named COVID-19. The symptoms of SARS-Cov-2 can range from fever, nauseousness, fatigue to pneumonia and even death. Because the virus has spread extremely rapidly, COVID-19 was proclaimed as a pandemic. The goal of this bachelor's thesis is to compare models that predict the spread of the virus. Our models were built on data provided by Johns Hopkins University and our chosen models were linear regression, nonlinear regression with a logistic function and a SIR model. According to the results the best models seemed to be the linear regression, where the train set was composed from data from the previous week and the nonlinear regression with a logistic function.

Ključne besede:COVID-19, prediction, regression, SIR model

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj