izpis_h1_title_alt

Primerjava računskih modelov za napovedovanje širjenja bolezni
ID BOSIL, ROK (Author), ID Demšar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (502,76 KB)
MD5: A4C709222656C50619ECEDCCFB459D50

Abstract
Konec leta 2019 se je na Kitajskem pojavil nov virus. Virus so poimenovali SARS-CoV-2 (angl. severe acute respiratory syndrome coronavirus 2) in bolezen, ki jo ta povzroča COVID-19. Znaki bolezni so vročina, slabo počutje, utrujenost, bolezen se lahko razvije v pljučnico in vodi celo v smrt. Zaradi hitrega širjenja virusa, je bil COVID-19 razglašen kot pandemija. Cilj diplomske naloge je primerjava modelov, ki napovedujejo širjenje virusa. Modeli so bili zgrajeni na podatkih pridobljeni iz univerze Johns Hopkins. Za modeliranje smo uporabili linearno regresijo, nelinearno regresijo z logistično funkcijo in model SIR. Glede na dobljene rezultate smo ugotovili, da sta najboljša modela linearna regresija, kjer smo napovedovali samo s podatki prejšnjega tedna in nelinearna regresija z logistično funkcijo.

Language:Slovenian
Keywords:COVID-19, napovedovanje, regresija, model SIR
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119307 This link opens in a new window
COBISS.SI-ID:28534531 This link opens in a new window
Publication date in RUL:07.09.2020
Views:1412
Downloads:223
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of computational models for predicting disease spread
Abstract:
At the end of 2019 a new virus appeared in China. The virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the disease it causes was named COVID-19. The symptoms of SARS-Cov-2 can range from fever, nauseousness, fatigue to pneumonia and even death. Because the virus has spread extremely rapidly, COVID-19 was proclaimed as a pandemic. The goal of this bachelor's thesis is to compare models that predict the spread of the virus. Our models were built on data provided by Johns Hopkins University and our chosen models were linear regression, nonlinear regression with a logistic function and a SIR model. According to the results the best models seemed to be the linear regression, where the train set was composed from data from the previous week and the nonlinear regression with a logistic function.

Keywords:COVID-19, prediction, regression, SIR model

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back