izpis_h1_title_alt

Klasifikacija intervalov elektroencefalograma med zamišljanjem motoričnih aktivnosti
ID Kalem, Mateo (Author), ID Jager, Franc (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,41 MB)
MD5: 5EDE10D0EAA85D778D73B0E89D6B0B8A

Abstract
Alternativne metode za komunikacijo med človekom in računalnikom so čedalje bolj potrebne, saj so nekatere osebe fizično nezmožne uporabljati računalnik in potrebujejo drugačno komunikacijo. V sklopu diplome smo primerjali dve metodi za klasifikacijo intervalov elektroencefalograma (EEG) med zamišljanjem motoričnih aktivnosti (zamišlja\-nja stiska leve ali desne roke). Uporabili smo posnetke podatkovne baze EEG\-MMI DS (EEG Motor Movement Imagery DataSet), ki je javna in prosto dostopna na straneh spletnega portala Physionet. Metodi, ki smo ju implementirali vsebujeta postopke digitalnega procesiranja signalov, izločanja značilk, strojnega učenja in klasifikacije. Metodi, ki smo ju implementirali nosita ime metoda z uporabo velike Laplace-ove maske in metoda izračunavanja Skupnih prostorskih vzorcev (CSP). Pridobljeni rezultati so pokazali, da je metoda CSP močnejša od Laplace-ove maske za izbrano množico posnetkov baze EEGMMI DS. Povprečna klasifikacijska točnost pri metodi CSP je znašala približno 59 \% medtem, ko je pri Laplace-ovi maski znašala približno 57 \%. Rezultati diplomskega dela prispevajo k boljšemu razumevanju problematike izločanja intervalov zamišljanja motoričnih aktivnosti in iskanju optimalne metode, za prevedbo osnovnih signalov v signale v prostoru komponent ter učinkovite klasifikacije intervalov zamišljanj.

Language:Slovenian
Keywords:elektroencefalogram, digitalno procesiranje signalov, komunikacija človek-računalnik, podatkovna baza EEGMMI DS.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119305 This link opens in a new window
COBISS.SI-ID:27838979 This link opens in a new window
Publication date in RUL:07.09.2020
Views:1481
Downloads:268
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Classification of electroencephalogram intervals during motor movement imagery
Abstract:
Alternative methods for human-computer interaction are increasingly need\-ed, as some people are physically unable to use a computer and require an alternative type of communication. In the scope of diploma thesis, we compared two methods for classifying electroencephalogram (EEG) intervals during imagining motor activi\-ties (left and right hand grip). We used records of the EEGMMI DS database (EEG Motor Movement Imagery DataSet), which is public and freely available on the pages of the Physionet website. The methods we implemented include procedures of digital signal processing, feature extraction, machine learning, and classification. The two implemented methods are called the method using large Laplacian mask, and the Common Spatial Patterns (CSP) computational method. The obtained results showed that the CSP method is more powerful than the Laplacian mask for the selected set of EEGMMI DS database records. The average classification accuracy for the CSP method was about 59 \% while for the Laplacian mask about 57 \%. The results of the diploma thesis will contribute to better understanding the problem of extracting intervals of motor activities and finding the optimal method for translating original signals into signals in the component space, and effective classification of the intervals of imagined motor activities.

Keywords:electroencephalogram, digital signal processing, human-computer interaction, EEGMMI DS database.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back