izpis_h1_title_alt

On nonlinear Schrödinger equations on the hyperbolic space
ID Cencelj, Matija (Author), ID Faragó, István (Author), ID Horváth, Róbert (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (638,32 KB)
MD5: E45E6B13B9078EFF84F8249AE55416D4

Abstract
We study existence of weak solutions for certain classes of nonlinear Schrödinger equations on the Poincaré ball model ▫$\mathbb{B}^N$▫, ▫$N\ge 3$▫. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution.

Language:English
Keywords:Schrödinger equation, Poincaré ball model, Palais principle, Laplace-Beltrami operator, Hadamard manifold, Kirchhoff-type problem
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2020
Number of pages:art. 124516 (12 str.)
Numbering:Vol. 492, iss.2
PID:20.500.12556/RUL-119296 This link opens in a new window
UDC:517.956:515.16
ISSN on article:0022-247X
DOI:10.1016/j.jmaa.2020.124516 This link opens in a new window
COBISS.SI-ID:25766659 This link opens in a new window
Publication date in RUL:07.09.2020
Views:1015
Downloads:391
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back