izpis_h1_title_alt

Določanje berljivosti napisov na poljubnih ozadjih s pomočjo algoritmov strojnega učenja
ID ALIBAŠIĆ, ELVISA (Author), ID Fürst, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,74 MB)
MD5: B950A992B48B7F72077A565A6B7C673E

Abstract
Pri izdelavi vizualnega gradiva je pomembno, da so napisi na slikah in videu berljivi ne glede na ozadje. S tem problemom se srečujemo v številnih dejavnostih, še zlasti v oglaševalski in filmski industriji. Cilj diplomske naloge je razviti in preizkusiti metodo določanja berljivosti napisov na poljubnih ozadjih. Učno množico smo oblikovali s pomočjo anketiranja, in sicer tako, da smo za večjo množico slik anketirance povprašali, ali so berljive. Nato smo zajeli ključne podatke (kontrast, svetloba ipd.). Pri tem smo uporabili barvna modela RGB in HSL. Na osnovi zajetih podatkov smo zgradili linearni model. Odgovor na vprašanje berljivosti smo v okviru naloge obravnavali kot dvojiški, zato smo model zgradili s pomočjo logistične regresije. Zgrajeni model smo ovrednotili z metodami, kot sta AUC in prečno preverjanje. Končni klasifikacijski model je bil pri napovedovanju berljivosti napisov natančen v 68 odstotkih. Na podlagi rezultatov bo lahko oglaševalec med samodejno generiranimi oglasi izbral najbolj berljive.

Language:Slovenian
Keywords:strojno učenje, oblikovanje, oglasi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-119215 This link opens in a new window
COBISS.SI-ID:27817219 This link opens in a new window
Publication date in RUL:04.09.2020
Views:1178
Downloads:216
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determining the legibility of text on arbitrary backgrounds using machine learning algorithms
Abstract:
In visual media production (e.g., in marketing and film industry), it is important that the text on images and video is legible regardless of the background. The goal of the thesis is to develop and evaluate a method to determine the legibility of text on arbitrary backgrounds. The dataset was created using surveys. For a large dataset of photos, we asked the participants whether they are legible or not. Subsequently, we gathered key features (contrast, lightness etc.) by using the RGB and HSL color models. The gathered data were employed to build a linear model. Because we perceive legibility as binary, we used logistic regression. The model was evaluated using such methods as AUC and cross validation. The final classification model is 68% accurate at predicting legibility. Based on these results, advertisers can, from a set of generated ads, select the most legible.

Keywords:machine learning, design, ads

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back