izpis_h1_title_alt

Izboljšan prenos toplote pri vrenju na kemično obdelanih bakrenih površinah
ID Mlakar, Nejc (Author), ID Golobič, Iztok (Mentor) More about this mentor... This link opens in a new window, ID Zupančič, Matevž (Comentor)

.pdfPDF - Presentation file, Download (5,20 MB)
MD5: B65FE8AFCC01979C850BDB4F4C43DD89

Abstract
Mehurčkasto vrenje spada med najbolj učinkovite mehanizme prenosa toplote in je tudi tehnično dobro obvladljivo. Prenos toplote pri vrenju izboljšamo s povečanjem koeficienta toplotne prestopnosti in dvigom kritične gostote toplotnega toka. Na izboljšanje prenosa toplote lahko vplivamo predvsem s spremembo mikro- in nanostrukture ter omočljivosti vrelne površine. V magistrskem delu smo ovrednotili vpliv kemičnega strukturiranja bakrenih površin na izboljšan prenos toplote pri mehurčkastem vrenju. Bakrene vzorce smo kemično strukturirali s potapljanjem v alkalne raztopine, s čimer smo želeli doseči tvorbo mikro- in nanostrukture, ki ugodno vpliva na proces vrenja. Površine smo ovrednotili s posnetki elektronske mikroskopije in meritvami kota omočenja. Prenos toplote pri vrenju na strukturiranih površinah smo ovrednotili na merilni progi za vrenje v bazenu pod pogoji nasičenega vrenja dvakrat destilirane vode pri atmosferskem tlaku. Na podlagi meritev oz. izračunov gostote toplotnega toka in pregretja površine smo izrisali vrelne krivulje in določili koeficiente toplotne prestopnosti. Na neobdelani referenčni površini smo dosegli kritično gostoto toplotnega toka 1385 kW m-2, ki smo jo s kemičnim strukturiranjem povečali na maksimalno 2000 kW m-2. Koeficient toplotne prestopnosti je na referenčni površini znašal 60 kW m-2 K-1, na obdelanih površinah pa smo zabeležili vrednosti do 125 kW m-2 K-1.

Language:Slovenian
Keywords:mehurčkasto vrenje, izboljšan prenos toplote, kemično strukturiranje površin, kritična gostota toplotnega toka, koeficient toplotne prestopnosti, inženiring površin
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[N. Mlakar]
Year:2020
Number of pages:XXII, 63 str.
PID:20.500.12556/RUL-119177 This link opens in a new window
UDC:536.24:542.467:669.3(043.2)
COBISS.SI-ID:28611587 This link opens in a new window
Publication date in RUL:04.09.2020
Views:1964
Downloads:196
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Chemical structured copper surfaces for enhanced nucleate boiling heat transfer
Abstract:
Nucleate boiling is one of the most efficient heat transfer mechanisms and is a technically well-controllable process. Boiling heat transfer can be enhanced by increasing the heat transfer coefficient and raising the critical heat flux. The enhancement of boiling heat transfer can be achieved primarily by modifying the micro- and nanostructure of the boiling surface and its wettability. In this thesis, we evaluate the influence of chemical structuring of copper surfaces on enhanced nucleate boiling heat transfer. Copper samples were chemically structured through immersion in alkaline solutions with the aim of achieving the formation of micro- and nanostructures favorable for boiling heat transfer. Surface properties were evaluated using scanning electron microscopy and contact angle measurements. Heat transfer properties of structured surfaces were evaluated using a pool boiling experimental setup. Saturated nucleate boiling conditions were maintained throughout the experiments, which were carried out using twice-distilled water at atmospheric pressure. Boiling curves and heat transfer coefficients were determined based on measurements and calculations of the heat flux and boiling surface superheat. Critical heat flux of 1385 kW m-2 was recorded on an untreated reference surface, while values of up to 2000 kW m-2 were recorded on structured surfaces. Heat transfer coefficients of 60 kW m-2 K-1 and of up to 125 kW m-2 K-1 were recorded on the reference surface and chemically structured surfaces, respectively.

Keywords:nucleate boiling, enhanced heat transfer, chemical surface structuration, critical heat flux, heat transfer coefficient, surface engineering

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back