izpis_h1_title_alt

Analiza časa izdelave oglasov
ID TORKAR, MIHA (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window, ID Vodopivec, Tom (Comentor)

.pdfPDF - Presentation file, Download (3,56 MB)
MD5: 9A492D1DB6D4B5CC804337074EC25E17

Abstract
Spletno oglaševanje predstavlja čedalje večji delež celotnega oglaševanja, s tem pa se razvijajo tudi različne platforme za izdelavo spletnih oglaševalskih kampanj. Naš cilj je bil ugotoviti, kateri atributi najbolj vplivajo na potreben čas za izdelave kampanje na podlagi podatkov, ki nam jih je priskrbelo podjetje Celtra d.o.o. Atribute ocenjujemo z RReliefF-om in Boruto, nato zgradimo več regresijskih napovednih modelov in najuspešnejšega med njimi razložimo z uporabo metode SHAP. Ugotovimo, da na čas izdelave najbolj vpliva število komponent oglasov v kampanji, število uporabnikov in to, koliko dela na kampanji opravijo grafični oblikovalci.

Language:Slovenian
Keywords:naključni gozdovi, regularizacija Tihonova, metoda podpornih vektorjev, odločitveno drevo, RReliefF, Boruta, vrednosti Shapley, Shapleyeve aditivne razlage, pomembnost atributov, oglaševanje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119126 This link opens in a new window
COBISS.SI-ID:27705091 This link opens in a new window
Publication date in RUL:03.09.2020
Views:1130
Downloads:192
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of advert production time
Abstract:
Online advertising amounts to an increasingly big share of all advertising. Along with that, more and more different platforms for the production of online advertising campaigns are being developed. Our goal is to find out, which attributes most affect the necessary production time of online advertising campaigns. We use the data about campaigns production provided by Celtra d.o.o. We evaluate attributes with the use of RReliefF and Boruta, then we build several different machine learning models for campaign production time prediction. With the use of Shapley additive explanations, we explain the most successful of our models. We find out that the number of components used, the number of users, and the percentage of production time done by graphic designers have the greatest impact on the production time.

Keywords:random forests, ridge regression, support vector machine, decision tree, RReliefF, Boruta, Shapley values, Shapley additive explanations, feature importance, advertising

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back