izpis_h1_title_alt

Primerjalna analiza postopkov za samodejno razpoznavanje uhljev
ID ČRNIGOJ, TOMAŽ (Avtor), ID Štruc, Vitomir (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,07 MB)
MD5: B02BD8FBFADCC1C3B74AACCB2146C52A

Izvleček
V pričujočem diplomskem delu se osredotočamo na problem biometrične prepoznave ljudi prek uhljev; natančneje, osredotočamo se na vrednotenje uspešnosti štirih algoritmov, namenjenih luščenju značilk s slik uhljev, ki jih je mogoče uporabiti tako pri prepoznavi z identifikacijo kot z verifikacijo. Ti algoritmi so: lokalni binarni vzorci (angl. Local Binary Patterns – LBP), lokalna kvantizacija faze (angl. Local Phase Quantisation – LPQ), histogram orientiranih gradientov (angl. Histogram of Oriented Gradients – HOG) in Gaborjevi valčki (skrajšano Gabor). Naše glavno orodje za vrednotenje uspešnosti algoritmov je ROC krivulja, uporabimo pa tudi nekaj drugih mer uspešnosti. V Uvodu najprej predstavimo sorodna dela, s pomočjo katerih orišemo zgodovino metod za biometrično prepoznavo ljudi. Ta se je začela že veliko pred prvimi računalniki, in sicer z odkritjem prstnih odtisov ter uporabo le teh za biometrično prepoznavo znanih kriminalcev v 19. stoletju. Nadaljujemo s teoretičnimi osnovami vsakega od algoritmov ter primerjavo med njimi. Nato predstavimo še sam postopek vrednotenja algoritmov, pri čemer opišemo tudi podatkovno zbirko in strojno opremo, ki smo ju pri tem uporabili. V zadnjem poglavju s pomočjo grafov in tabel prikažemo točne podatke, s katerimi smo določili uspešnost algoritmov. Ugotavljamo tudi, ali se uspešnost posameznih algoritmov razlikuje glede na spol in etnično pripadnost ljudi na slikah.

Jezik:Slovenski jezik
Ključne besede:biometrična prepoznava, LBP, lokalni binarni vzorci, LPQ, lokalna kvantizacija faze, HOG, histogram orientiranih gradientov, Gaborjevi valčki, Gabor, identifikacija, verifikacija, podatkovna zbirka, uhlji
Vrsta gradiva:Diplomsko delo/naloga
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2020
PID:20.500.12556/RUL-119079 Povezava se odpre v novem oknu
Datum objave v RUL:02.09.2020
Število ogledov:864
Število prenosov:118
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Comparative analysis of automatic ear recognition techniques
Izvleček:
In this diploma we focus on recognition of subjects using ear images; more accurately, we focus on evaluation of four algorithms, used as feature extractors, which we can use for either identification or verification. The four algorithms are: Local Binary Patterns – LBP, Local Phase Quantisation – LPQ, Histogram of Oriented Patterns – HOG and Gabor wavelets (also Gabor). Our main tool for evaluating algorithm success is the Receiver Operating Characteristic – ROC curve, but we also use a couple of other mathematical tools. First, we present similar works, which represent the history of biometric recognition methods. Those first appeared a lot earlier than computers – in the late 19th century, when fingerprints were first used to recognize known criminals. We proceed with theoretical descriptions of each of the algorithms and comparisons between them. Moving on, we describe our evaluation process, along with the description of the database and the hardware we used. Furthermore, we show the data, which we used to determine algorithm success and accuracy, showing graphs and processes that we used. We also compare the algorithm success depending on gender and ethnicity of the people in the images.

Ključne besede:biometric recognition, LBP, local binary patterns, LPQ, local phase quantization, HOG, histogram of oriented gradients, Gabor wavelets, Gabor, identification, verification, database, ears

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj