izpis_h1_title_alt

Ekstremno nepovezani prostori : delo diplomskega seminarja
ID Lekše, Maruša (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (929,50 KB)
MD5: 589F89952929665DCFB18D97B4A1CEE0

Abstract
Ekstremno nepovezani prostori so prostori, v katerih je zaprtje vsake odprte množice odprta množica. V tem diplomskem delu se osredotočimo na nekatere zanimive lastnosti ekstremno nepovezanih prostorov Tihonova. Pokažemo, da je v takšnih prostorih vsako konvergentno zaporedje od nekega člena naprej konstantno. Doka- žemo, da je prostor Tihonova ekstremno nepovezan natanko tedaj, ko ima vsaka navzgor omejena podmnožica delno urejene množice C(X) natančno zgornjo mejo. Pokažemo tudi, da je za prostore Tihonova vsako ekstremno nepovezano topološko polje diskretno in da je topološka grupa diskretna natanko tedaj, ko je prostor G×G ekstremno nepovezan. Na koncu s pomočjo Stone-Čechove kompaktifikacije najdemo primer prostorov, ki jih preučujemo.

Language:Slovenian
Keywords:ekstremno nepovezan prostor, topološke grupe, topološka polja, Stone-Čechova kompaktifikacija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-118691 This link opens in a new window
UDC:515.1
COBISS.SI-ID:58825987 This link opens in a new window
Publication date in RUL:30.08.2020
Views:1394
Downloads:145
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Extremally disconnected spaces
Abstract:
Extremally disconnected spaces are spaces, in which the closure of every open set is open. In this thesis we examine some interesting properties of extremally disconnec- ted Tychonoff spaces. We prove that in such spaces, every convergent sequence is constant from some point on. We show that a Tychonoff space is extremally disco- nected if and only if every subset of the partially ordered set C(X) that has an upper bound, also has a least upper bound. We also prove that an extremally disconnected Tychonoff topological field is discrete and that an extremally disconnected Tycho- noff topological group G is discrete if and only if the product G × G is extremally disconnected. In the end of this thesis we define Stone-Cech compactification in order to find an example of the spaces that we are studying.

Keywords:extremally disconnected space, topological group, topological field, Stone-Čech compactification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back