Details

Dugundjijev razširitveni izrek : delo diplomskega seminarja
ID Urh, Gašper (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (667,97 KB)
MD5: 0B449A62946B2691FE59EC9A75F935DD

Abstract
V diplomskem delu je podrobno obravnavan dokaz Dugundjijeve razširitve Tietzejevega razširitvenega izreka za preslikave iz zaprte podmnožice metričnega prostora v lokalno konveksne topološke vektorske prostore in njegove neposredne posledice v normiranih topoloških vektorskih prostorih. Opisan je tudi dokaz za primer, ko namesto metričnega prostora opazujemo parakompakten Hausdorffov prostor. Definirana je Dugundjijeva razširitvena lastnost, ki zajema obstoj simultanega razširitvenega operatorja, in dokazano je, da imajo poleg metričnih to lastnost tudi stratifikabilni prostori. S primerom Sorgenfreyeve premice je prikazano, da tak simultani razširitveni operator lahko najdemo tudi v nekaterih nestratifikabilnih prostorih, s primerom Michaelove premice pa, da te lastnosti nimajo vsi normalni prostori, tudi če so parakompaktni in Hausdorffovi.

Language:Slovenian
Keywords:razširitveni izreki, simultani razširitveni operator, parakompaktnost, stratifikabilni prostori, posplošeni linearno urejeni prostori
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-118217 This link opens in a new window
UDC:515.1
COBISS.SI-ID:58828035 This link opens in a new window
Publication date in RUL:27.08.2020
Views:1043
Downloads:107
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Dugundji extension theorem
Abstract:
In this bachelor's thesis, the proof of Dugundji’s extension of Tietze extension theorem for mappings from a closed subset of a metric space into a locally convex linear space is presented in detail together with its immediate consequences. The theorem where a paracompact Hausdorff space is considered instead of a metric one is also proved. The Dugundji extension property concerning the existence of a simultaneous extender is defined and it is proved that not only metric but also stratifiable spaces have this property. With the example of the Sorgenfrey line it is shown that it is sometimes possible to find such simultaneous extenders in spaces that are not stratifiable, while with the example of the Michael line it is shown that not all normal spaces have this property, even if they are paracompact Hausdorff spaces.

Keywords:extension theorems, simultaneous extender, paracompactness, stratifiable spaces, generalized ordered spaces

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back