Identifying gifted, talented and persons with an above-average competence has always been of great importance for the development and progress of the society. When it comes to education and childcare, we can do a lot in this direction by an early identification of gifted children – that enables us to handle gifted students appropriately, to cultivate and encourage their advantages, as well as help them overcome their potential weaknesses. Only a combination of the above-mentioned enables development of their full potential.
It needs to be emphasized that giftedness may be manifested in many different areas. Criteria for giftedness are often clear – talented musicians, for example, have an exceptional ear for music, sense of rhythm and developed suitable motoric functions for playing an instrument; gifted athletes achieve the best results in their generations; gifted artists are capable of expressing themselves through different forms of art, and so forth. However, we have known for a long time that some people are remarkably successful in finding patterns and cause-and-effect relationships in our surroundings. These people are frequently successful as scientists in different areas and, when they focus on natural sciences, we may say that they are gifted in the field of natural sciences. Scientists are the ones who bring progress to the society; nevertheless, the phenomenon of children gifted in natural sciences, i.e. children that may become scientists, is unfortunately still relatively poorly researched.
Many researchers have already noticed that standardised giftedness identification tests do not detect all gifted persons. Consequently, children who belong to minorities, children of immigrants, children who come from disadvantaged backgrounds education-wise, as well as twice-exceptional students (children with learning weaknesses who are simultaneously gifted) are often for various reasons overlooked. These children usually lack motivation for school or any school-related work, which is why their test results are poorer compared to their peers, or due to other weaknesses such as lack of vocabulary, reading, writing or calculating weaknesses, language barrier, or they simply do not reach the achievement levels of their peers.
We have already mentioned that children gifted in natural sciences often grow up to become scientists. Therefore, it seems self-evident that the learning method suitable for these children is derived from an actual scientific method. This type of schooling is called inquiry-based learning. The fundamental feature of inquiry-based learning is the student’s activity, where the goals of this method include finding an answer to the research question, as well as the means of finding the answer.
The thesis presents a learning unit that we have developed according to the rules of inquiry-based learning and which may represent an outline for an instrument for identifying students gifted in natural sciences. The learning unit addresses certain contemporary scientific discoveries that have not yet been included in the curriculum and are usually not talked about in the everyday life – nevertheless, we encounter them every day. This is why all students should start from the same point in this unit of inquiry-based learning, without any prior knowledge. Besides, the learning unit has been formed in such a way that it does not require complicated calculations or verbose technical expressions from the student. That way we have avoided the obstacles of the above-mentioned standardised giftedness identification tests.
The learning unit is composed of five tasks. The first task evaluates the child’s prior knowledge. In the second tasks children encounter for the first time a digital microscope and observe a photograph in colour on a computer screen. Here we ask the students to provide as many observations as possible. In task three they use the digital microscope to observe systematically how different colours are produced on the computer screen. Students then use their knowledge in tasks four and five, which we call “identification tasks”. These two tasks examine the extent to which the students understand the rules of additive colour mixing that they have just observed in task three.
A sample of 44 students from two Slovenian elementary schools participated in the study. In the fraction of correct responses five students stood out, one student especially, who provided correct answers to all questions. We analysed the answers of these students in detail and looked for features that are usually attributed to gifted students.
The students’ performance in tackling our learning unit was compared to their grades. Only one of the exposed students was among the most successful at school. The rest were also successful at school, but had slightly lower final grades on average than some other peers who had a poorer performance at our learning unit. Even though some were straight-A students, they performed poorer at our tests than their slightly less successful peers at school. School achievement is therefore not related to the achievement at our learning unit tests.
|