izpis_h1_title_alt

Avtomatsko postavljanje ločil v surovem tekstu
ID Rizvič, Mitja (Author), ID Bajec, Marko (Mentor) More about this mentor... This link opens in a new window, ID Lebar Bajec, Iztok (Comentor)

.pdfPDF - Presentation file, Download (2,13 MB)
MD5: 8D102980466C30869A1C58226A5ED481

Abstract
Razpoznava govora je sistem, ki omogoča avtomatsko pretvorbo govora v besedilo. Izhod takšnega sistema je surovo besedilo brez velikih začetnic, ločil in ostalih oblikovnih lastnosti. Ker je takšno besedilo nepregledno, ročno urejanje pa zahteva veliko dela, so se uveljavile različne metode, ki omenjene težave rešujejo avtomatsko. Takšni sistemi lahko temeljijo na različnih metodah, vendar so se v zadnjem času predvsem zaradi dobrih rezultatov uveljavili različni tipi nevronskih mrež. Tako smo v sklopu magistrskega dela implementirali sistem, ki za svoje delovanje uporablja rekurenčne nevronske mreže. Preizkusili smo ga z različnimi vektorskimi vložitvami, kot so GloVe, ELMO in BERT. Implementirali smo tudi spletno storitev, ki omogoča, da sistem enostavno integriramo v različne storitve, kot je npr. že prej omenjena avtomatska razpoznava govora.

Language:Slovenian
Keywords:strojno učenje, nevronske mreže, postavljanje ločil
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-117687 This link opens in a new window
COBISS.SI-ID:32307203 This link opens in a new window
Publication date in RUL:22.07.2020
Views:2732
Downloads:274
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic punctuation in raw word sequences
Abstract:
Speech recognition is a system that allows for automatic conversion of speech into written text. Such systems typicaly return raw text without any formatting such as capital letters or punctuation symbols. Because such text is unreadable and it also requires a lot of work to edit manually, various methods have been introduced that solve these problems automatically. Such systems can be based on a variety of methods. However, due to good results they provide, different types of neural networks are mainly used nowdays. As part of the master's thesis, we have implemented a system that uses recurrent neural network to predict punctuation symbols in raw unpunctuated text. We have tried it with different word embeddings such as GloVe, ELMO and BERT. We have also implemented a web service that allows us to easily integrate the system into various other services, such as automatic speech recognition.

Keywords:machine learning, neural networks, punctuation restoration

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back