izpis_h1_title_alt

Visoko občutljivo merjenje pikosekundnih laserskih sunkov
ID Šušnjar, Peter (Author), ID Petkovšek, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,88 MB)
MD5: A48C358E82D95F7D30B5624AA7A3F0E6

Abstract
Ultrakratki laserski sunki (UKS) so zaradi svojih unikatnih lastnosti – kratke dolžine le nekaj pikosekund ali manj ter visoke intenzitete, ki jo ta omogoča, izredno uporabno orodje za proučevanje in preoblikovanje materije. Za številne aplikacije je ključna informacija o časovni obliki UKS - tako ovojnice časovne intenzitete kot poteka faze elektromagnetnega vala. Hitrost spreminjanja obeh žal presega hitrost odziva najhitrejših optoelektronskih detektorjev. Zaradi tega so bile razvite številne metode za karakterizacijo UKS, ki posredno rekonstruirajo polno obliko UKS. Metoda spektralno razločene avtokorelacije (angl. Frequency-Resolved Optical Gating) ali na kratko FROG, je ena prvih, danes pa zaradi svoje praktičnosti in zanesljivosti tudi najbolj razširjena karakterizacijska metoda UKS. Le-ta iz eksperimentalnega približka spektrograma in s pomočjo rekonstrukcijskega algoritma izmeri kompletno obliko UKS (ovojnico in fazo nosilnega vala). Metoda FROG je bila razvita in kasneje v veliki večini uporabljane za karakterizacijo čim krajših UKS visokih energij in posledično čim višjih intenzitet. V tem delu smo razvili dve različici metode z občutno izboljšano občutljivostjo z namenom karakterizacije razmeroma daljših, pikosekundnih sunkov nizkih energij. Meritev spektrograma izvedemo preko nelinearne interakcije merjenega sunka in časovno zakasnjene replike, pri čemer detektiramo spektralno razločen nelinearni signal v odvisnosti od časovnega zamika. Kot nelinearni proces najnižjega, 2. reda, je za občutljive meritve najbolj primeren proces podvajanja optične frekvence. Za točno meritev mora biti izpolnjen pogoj faznega ujemanja med električnim poljem pri osnovni in dvojni optični frekvenci vzdolž celotnega spektra UKS, kar terja zelo tanke nelinearne kristale in posledično neučinkovit nelinearni proces. V okviru tega dela smo zato preizkusili tri alternativne geometrije frekvenčnega podvajanja UKS, ki zagotavljajo dovolj široko spektralno širino frekvenčno podvojene svetlobe ter hkrati izboljšajo učinkovitost nelinearnega procesa - dolg dvolomni kristal v kombinaciji z močnim fokusiranjem, skupek kristalov v postavitvi s kompenzacijo prostorskega razklona ter strukturiran kristal s kvazi faznim ujemanjem. Visoko občutljivost metode smo poleg optimizacije frekvenčnega podvajanja dosegli še z uporabo kolinearne geometrije in spektrometra brez zaslonke. Z enakimi spremembami standardne postavitve smo izboljšali tudi občutljivost metode GRENOUILLE, ene izmed različic metode FROG, pri kateri sam nelinearni kristal služi tudi za spektralno razločitev signala. Občutljivost in merilno območje obeh metod smo določili s karakterizacijo izbranih šibkih sunkov. Obe visoko občutljivi metodi predstavljeni v tem delu širita področje delovanja metode FROG k daljšim sunkom nizkih energij do sedaj še nemerljivih oz. merljivih le v omejenem obsegu. Verjamemo, da bo v tem delu predstavljen podroben opis nove, izboljšane metode, skupaj s postopkom izbire ključnih parametrov in ovrednotenimi karakteristikami obeh merilnih sistemov, bistveno pripomogel pri karakterizaciji novih virov UKS.

Language:Slovenian
Keywords:Ultrakratki laserski sunki, karakterizacija sunkov, spektralno razločena avtokorelacija, frekvenčno podvajanje svetlobe
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-117644 This link opens in a new window
COBISS.SI-ID:23996675 This link opens in a new window
Publication date in RUL:18.07.2020
Views:1399
Downloads:178
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Unknown
Title:Highly-sensitive characterization of ultrashort laser pulses
Abstract:
An extreme short duration and high intensities are the two unique properties of ultrashort laser pulses making them an unparalleled tool for studying as well as transforming the matter. For many applications, the information about ultrashort pulse shape – both its intensity and its phase - is of great importance. However, even the fastest optoelectronic components are orders of magnitude too slow to trace out the fast changing envelope of an ultrashort laser pulse. One of the first, and today probably the most wide-spread characterization method for ultrashort light pulses is Frequency-Resolved Optical Gating (FROG). It can determine the pulse shape from the measured approximation of a pulse’s spectrogram followed by reconstruction of the exact field by an iterative algorithm. In this work, we have studied and developed an improved version of FROG in terms of sensitivity, capable of characterizing relatively long and weak, few-picoseconds pulses with low energy. The spectrogram is recorded by spectrally resolving the signal from the nonlinear interaction of a pulse and its delayed replica for the varying delay times. Second harmonic generation (SHG) is the nonlinear process of choice for the most sensitive measurements due to its lowest order of nonlinearity. Phase-matching the broad spectrum of an ultrashort pulse typically requires very thin nonlinear crystals, which leads to low conversion efficiencies. We have tested here the three non-standard SHG-FROG geometries - a thick nonlinear crystal in combination with the tight focusing, a walk-off compensating stack of crystals and a quasi phase-matching in a periodically-poled crystal. High sensitivity was achieved by optimization of SHG process, use of collinear geometry and a slitless spectrometer. The same improvements were applied to another variant of FROG, called GRENOUILLE, which extracts the spectral information through narrow and angular-dependent phase-matching bandwidth of a thick birefringent crystal. The sensitivity and the measurement range (the shortest and the longest pulse) of both experimental setups were tested on specific pulses and also related to the critical design parameters. Both here presented concepts are extending the operation range of FROG method towards longer and weaker pulses, which were so far impossible or hardly possible to measure. We strongly believe, that an in-depth description of the main concepts of these novel, yet technologically simple enough FROG adaptations, will serve researchers in characterization and development of new sources of ultrashort light pulses and its applications in the future.

Keywords:Ultrashort laser pulse, pulse characterization, frequency resolved optical gating, second harmonic generation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back