Details

On existence of PI-exponents of unital algebras
ID Repovš, Dušan (Author), ID Zaicev, Mikhail (Author)

.pdfPDF - Presentation file, Download (574,88 KB)
MD5: 57B9F58621DF6D28EFCC4C37F30CBDD8

Abstract
We construct a family of unital non-associative algebras ▫$\{ T_\alpha | 2 < \alpha \in \mathbb{R} \}$▫ such that ▫$\underline{exp}(T_\alpha) = 2$▫, whereas ▫$\alpha \le \overline{exp} (T_\alpha) \le \alpha + 1$▫. In particular, it follows that ordinary PI-exponent of codimension growth of algebra ▫$T_\alpha$▫ does not exist for any ▫$\alpha > 2$▫. This is the first example of a unital algebra whose PI-exponent does not exist.

Language:English
Keywords:polynomial identities, exponential codimension growth, PI-exponent, unital algebra, numerical invariant
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2020
Number of pages:Str. 853-859
Numbering:Vol. 28, no. 2
PID:20.500.12556/RUL-117020 This link opens in a new window
UDC:512.552
ISSN on article:2688-1594
DOI:10.3934/era.2020044 This link opens in a new window
COBISS.SI-ID:20166147 This link opens in a new window
Publication date in RUL:19.06.2020
Views:1430
Downloads:342
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Electronic research archive
Shortened title:Electron. res. arch.
Publisher:American institute of mathematical sciences
ISSN:2688-1594
COBISS.SI-ID:20165635 This link opens in a new window

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back