izpis_h1_title_alt

Magnetnoresonančno slikanje difuzijskega tenzorja
ID Noč, Matic (Author), ID Serša, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (27,18 MB)
MD5: 2BD35272D8BE0697751213DB096D2281

Abstract
Slikanje z magnetno resonanco je od svojih začetkov, do danes doživelo močan razmah v razvoju novih tehnik slikanja in aplikacij metod za klinično diagnostiko. Statična magnetna polja po do sedaj znanih raziskavah ne škodujejo človeškemu telesu, slikanje prav tako ne povzroča ionizirajočega sevanje, zato je slikanje z magnetno resonanco za človeka neškodljivo. Ena od naprednejših slikovnih metod, ki se uporablja tudi v kliničnih preiskavah, je slikanje anizotropne difuzije v vzorcih. V mnogih tkivih je namreč difuzija vodnih molekul anizotropna. Tipičen primer tega so živčna vlakna, kjer je difuzija hitrejša vzdolž vlaken, kot pa v prečni smeri na vlakna. Z merjenjem hitrosti difuzije v različnih smereh prostora lahko določimo smer najhitrejše difuzije in tako tudi smer vlaken. Če poznamo hitrost difuzije v vsaj šestih različnih smereh prostora, lahko podatke uporabimo tudi za izračun difuzijskega tenzorja. V tem delu najprej preučimo vpliv difuzije na signal magnetne resonance (MR) in osnove merjenja navidezne difuzijske konstante z metodo pulznih gradientov (PGSE). Opišemo implementacijo metode PGSE na sistemu za prostorsko visoko ločljivo MR slikanje na Inštitutu Jožef Stefan, v Laboratoriju za slikanje z magnetno resonanco in izmerimo navidezne difuzijske konstante vzorcev različnih rastlinskih tkiv in vode. Na koncu slikovno metodo razširimo v 3D in slikamo difuzijski tenzor (DTI) vzorca mišjih možganov ter s pomočjo implementacije algoritma za izračun difuzijskega tenzorja, prikažemo usmerjenost živčnih vlaken v mišjih možganih. V delu preučimo tudi odvisnost napake izračunanih difuzijskih tenzorjev od števila in smeri različnih difuzijskih gradientov, ter analiziramo vpliv notranjih induciranih gradientov magnetnega polja na meritev navideznih difuzijskih konstant vode.

Language:Slovenian
Keywords:slikanje z magnetno resonanco, difuzijsko uteženo slikanje, difuzijski tenzor, navidezna difuzijska konstanta, PGSE, DWI, DTI, FA, ADC, anizotropna difuzija, živčna vlakna
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-116932 This link opens in a new window
COBISS.SI-ID:19908867 This link opens in a new window
Publication date in RUL:17.06.2020
Views:2302
Downloads:511
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Magnetic resonance imaging of diffusion tensor
Abstract:
MRI - Nuclear magnetic resonance imaging has since its beginnings, to present time developed significantly, which can be seen also in new imaging techniques and their applications in clinical diagnostics. Static magnetic fields are harmless to human body and MRI also does not produce any ionizing radiation. Therefore, MRI is considered harmless to humans. One of important and frequently used MR imaging methods is imaging of anisotropic diffusion. Many tissues show anisotropic diffusion of water molecules. Typical example of anisotropic tissue are nerve fibers, where diffusion is faster in direction parallel to fibers than in direction perpendicular to fibers. Measuring diffusion constants in different directions enables us to find the direction of fastest diffusion and therefore fiber direction. If we measure diffusion in at least six different directions in space, we can use the data to calculate the diffusion tensor. In this thesis, we first study the effect of diffusion on the MRI signal and the basics of measuring Apparent Diffusion Coefficients (ADC) with the imaging method of Pulsed Gradient Spin Echo (PGSE). Firstly, we implement PGSE on a system for high spatial resolution MR imaging at Jožef Stefan Institute and measure ADC of different plant samples and of water. Secondly, we upgrade the implemented method to Diffusion Tensor Imaging (DTI) in 3D and use the method to measure DTI of mouse brain. Finally, we implement an algorithm for diffusion tensor calculation and show orientation of nerve fibers in mouse brain. In the thesis we also analyze how errors of diffusion tensor calculation depend on the selection of the number and direction of different diffusion gradients. We also analyze influence of induced internal magnetic field gradients on the precision of ADC measurments.

Keywords:magnetic resonance imaging, diffusion weighted imaging, diffusion tensor, ADC, PGSE, DWI, DTI, FA, ADC, anisotropic diffusion, nerve fibers

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back