izpis_h1_title_alt

Risanje vozlov s krožnimi loki
ID VENE, ŽIGA (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (901,90 KB)
MD5: D27F4A229179F36489691BF353F47E81

Abstract
Kinderman je s soavtorji razvil sistem za risanje vozlov, kjer za posamezne odseke vozlovega diagrama uporabimo po en krožni lok; tako imenovane Lombardi risbe vozlov. Sistem so podali za diagrame vozlov, v katerih je vsaj eden izmed grafov lic enostaven. V delu opišemo in razdelamo celoten postopek pretvorbe PD zapisa vozlovega diagrama v njegovo risbo. Iz PD zapisa najprej izračunamo graf vozla in grafa lic. Grafa lic s pomočjo Möbiusovih transformacij predstavimo s primarno-dualnim pakiranjem krožnic, na katerem izrišemo diagram vozla, kjer posamezen segment vozlovega diagrama predstavimo s krožnim lokom. Graf vozla po potrebi razširimo z dodatnimi križišči, če ga v primarno-dualno pakiranje ne moremo pretvoriti direktno. Postopek smo v celoti izdelali in delo zaključili z izrisom 664 diagramov vozlov.

Language:Slovenian
Keywords:vozel, diagram vozla, ravninski graf, risanje grafov, Lombardi risba, risba s krožnimi loki, primarno-dualno pakiranje krožnic
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-116841 This link opens in a new window
COBISS.SI-ID:19404803 This link opens in a new window
Publication date in RUL:12.06.2020
Views:1297
Downloads:278
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Drawing knots using circular arcs
Abstract:
Kinderman et al. have introduced a knot layout in which every segment of a knot diagram is a circular arc, also called Lombardi drawings. We describe and discuss the transformation of a knot diagram in PD notation into a knot drawing. We first translate PD notation into a knot graph and it's primal-dual multigraph pair. We calculate a primal-dual circle packing, in which we find the circular arcs representing knot diagram segments. If the primal-dual multigraph pair cannot be transformed into a primal-dual circle packing directly we first extend it. The whole procedure was implemented and using it we generated 664 Lombardi drawings.

Keywords:knot, knot diagram, planar graph, graph drawing, Lombardi drawing, drawing using circular arcs, primal-dual circle packing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back