izpis_h1_title_alt

Napovedni modeli za identifikacijo potencialnih inhibitorjev različnih proteinov virusa ebole
ID Hudi, Vita (Author), ID Podlipnik, Črtomir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,02 MB)
MD5: 61005FAC2A0E9DDA6381FF861EADFC9D

Abstract
Virus Ebola (lat. ebolavirus) je filovirus tipa (-)ssRNA, ki je znan po visokih stopnjah prenosa in smrtnosti. Smrtnost bolezni, ki je izbruhnila leta 2014 v Zahodni Afriki, se je na primer gibala med 50-70 %. Bolezen, ki jo ta virus povzroča, se prenaša s telesnimi tekočinami okuženih. Okužbi sledi padec imunskega sistema, vnetni odziv, odpoved vaskularnega sistema in odpoved več organov. Smrt nastopi po 6-16 dneh od prvih znakov okužbe. Na tržišču zaenkrat še ni dostopnih učinkovitih zdravil za zdravljenje okužbe, nekatera cepiva, ki dokazano ščitijo proti okužbi z virusom Ebola, pa so že v zadnji fazi kliničnega testiranja. RNA genom ebolavirusa ima več genov, ki kodirajo za vsaj 10 različnih proteinov med drugimi za glikoprotein (GP) in za virusne proteine VP24, VP30, VP35, VP40. Tako kot mnogi drugi virusi, tudi ta za svojo replikacijo izrabi gostiteljske celice. Poznavanje strukture nam daje vpogled v delovanje virusa in nam omogoča napovedovanje interakcij posameznih virusnih proteinov z izbranimi molekulami. S pomočjo specializiranih programskih orodij lahko napovemo, ali se bo neka molekula vezala na določen protein, kam se bo vezala ter kako močno in učinkovito se bo vezala v izbrano vezavno mesto na proteinu. S tem ugotovimo ali je izbrana molekula potencialni inhibitor obravnavanega proteina in s tem tudi potencialno zdravilo pri okužbi s tem virusom. V okviru te magistrske naloge smo se iskanja potencialnih inhibitorjev virusa ebole lotili z metodami virtualnega rešetanja. Ustvarili smo zbirko spojin, ki naj bi že imele nek domneven zdravilen učinek proti eboli. Izmed zbranih spojin jih je mnogo takšnih, ki se že uporabljajo za zdravljenje različnih bolezni. V sklopu magistrske naloge smo iskali spojine, ki so že uveljavljene na svetovnem trgu kot zdravila in bi jih poleg tega lahko uporabili tudi pri zdravljenju ebole (ang. drug repurposing). Z metodo molekulskega sidranja v programu SeeSAR smo izbrali peščico takšnih spojin, ki so se in silico dobro vezale v vezavna mesta različnih proteinov ebolavirusa. V sklopu priprave napovednih modelov za identifikacijo potencialnih virusnih inhibitorjev smo pripravili drugo zbirko spojin, za katere smo imeli podane podatke o učinkovitosti vezanja na virusni protein 35 (VP35). Na podlagi te zbirke smo pripravili dva napovedna modela QSAR (kvantitativno razmerje med strukturo in delovanjem) in QSPR (kvantitativno razmerje med strukturo in lastnostjo) z metodo multivariatne linearne regresije. S pripravljenima napovednima modeloma lahko za nekatere izbrane molekule teoretično napovemo učinkovitost vezave v vezavno mesto proteina VP35 z neko določeno zanesljivostjo.

Language:Slovenian
Keywords:Ebola, ebolavirus, zdravila, virtualno rešetanje, molekulsko sidranje, QSAR, QSPR, napovedni modeli, multivariatna linearna regresija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2020
PID:20.500.12556/RUL-116617 This link opens in a new window
COBISS.SI-ID:18565379 This link opens in a new window
Publication date in RUL:29.05.2020
Views:1390
Downloads:257
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction models for identification of potential inhibitors for various Ebola virus proteins
Abstract:
The Ebola virus (lat. ebolavirus) is a (-)ssRNA filovirus known for its high transmission and mortality rates. The mortality rate of the epidemic that erupted in 2014 in West Africa, for example, ranged between 50-70%. The disease caused by this virus is transmitted through contact with bodily fluids of the infected. The infection is followed by a severe weakening of the immune system, an inflammatory response, vascular system failure and multi-organ failure. Death occurs after 6-16 days from the first signs of infection. There are currently no effective treatments available. Some vaccines that have been proven to protect against Ebola infection are currently in the final stages of clinical trials. The ebolaviruses RNA genome has 7 genes coding for at least 10 different proteins among which are glycoprotein (GP) and viral proteins VP24, VP30, VP35 and VP40. Like many other viruses, ebolavirus utilizes host cells for its replication. Knowledge of the viral structure gives us insight into the functioning of the virus and allows us to predict the interactions of individual viral proteins with selected molecules. With specialized software tools we can predict whether a molecule will bind to a specific protein, where it will bind, and how strongly and efficiently it will bind to the selected binding site on the protein. This determines whether the selected molecule is a potential inhibitor of the chosen viral protein and thus a potential cure for infection with virus Ebola. In this master's thesis, we searched for potential Ebola virus inhibitors using virtual screening methods. We have created a collection of compounds that have presumed therapeutic effect against infection with virus Ebola. Of the compounds collected, many are already used to treat various diseases. As part of this thesis, we looked for compounds that are already available on the market and could also be used in the treatment of Ebola. This approach is called drug repurposing. Using the molecular docking method in the program SeeSAR, we selected a handful of compounds that showed promising results for in silico binding to chosen binding sites of different ebolavirus proteins. We prepared a second collection of compounds and their corresponding data on the binding efficiencies to the viral protein 35 (VP35). We used this data for generation of two predictive models for identification of potential viral inhibitors. Predictive models QSAR (quantitative structure- activity relationship) and QSPR (quantitative structure-property relationship) were created using the multiple linear regression method. With these predictive models, we can calculate with some certainty, what the binding efficiency of a selected molecule to the VP35 protein binding site, is going to be.

Keywords:Ebola, ebolavirus, drugs, virtual screening, molecular docking, QSAR, QSPR, prediction models, multiple linear regression

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back