izpis_h1_title_alt

Infinitely many sign-changing solutions for Kirchhoff type problems in R[sup]3
ID Sun, Jijiang (Author), ID Li, Lin (Author), ID Cencelj, Matija (Author), ID Gabrovšek, Boštjan (Author)

.pdfPDF - Presentation file, Download (719,25 KB)
MD5: A25171D3F89C65245669B282E5F578A1

Abstract
In this paper, we consider the following nonlinear Kirchhoff type problem: ▫$$\begin{cases} - \Big (a+b \int_{\mathbb{R}^3} |\nabla u|^2 \Big) \Delta u + V(x)u = f(u), & \text{in} \quad \mathbb{R}^3 \; , \\ u \in H^1 (\mathbb{R}^3) \; , \end{cases}$$▫ where ▫$a,b > 0$▫ are constants, the nonlinearity ▫$f$▫ is superlinear at infinity with subcritical growth and ▫$V$▫ is continuous and coercive. For the case when ▫$f$▫ is odd in ▫$u$▫ we obtain infinitely many sign-changing solutions for the above problem by using a combination of invariant sets method and the Ljusternik-Schnirelman type minimax method. To the best of our knowledge, there are only few existence results for this problem. It is worth mentioning that the nonlinear term may not be 4-superlinear at infinity, in particular, it includes the power-type nonlinearity ▫$|u|^{p-2}u$▫ with ▫$p \in (2, 4]$▫.

Language:English
Keywords:infinitely many sign-changing solutions, Kirchhoff type problems, invariant sets, descending flow
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
Year:2019
Number of pages:Str. 33-54
Numbering:Vol. 186
PID:20.500.12556/RUL-115999 This link opens in a new window
UDC:517.956
ISSN on article:0362-546X
DOI:10.1016/j.na.2018.10.007 This link opens in a new window
COBISS.SI-ID:18506585 This link opens in a new window
Publication date in RUL:06.05.2020
Views:1495
Downloads:401
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Nonlinear Analysis
Shortened title:Nonlinear anal.
Publisher:Pergamon Press
ISSN:0362-546X
COBISS.SI-ID:26027520 This link opens in a new window

Secondary language

Language:Slovenian
Title:Neskončno mnogo rešitev s spremenljivim predznakom za probleme Kirchhoffovega tipa v R[sup]3
Abstract:
Obravnavamo naslednji nelinearni problem Kirchhoffovega tipa ▫$$\begin{cases} - \Big (a+b \int_{\mathbb{R}^3} |\nabla u|^2 \Big) \Delta u + V(x)u = f(u), & \text{in} \quad\mathbb{R}^3 \; , \\ u \in H^1 (\mathbb{R}^3) \; , \end{cases}$$▫ kjer sta ▫$a,b > 0$▫ konstanti, nelinearni člen ▫$f$▫ je superlinearen v neskončnosti, s subkritično rastjo, ▫$V$▫ pa je zvezna in vsiljena funkcija. V primeru, ko je ▫$f$▫ liha funkcija za ▫$u$▫, dobimo z uporabo kombinacije invariantnih množic in mini-maks metode Ljusternik-Schnirelmanovega tipa neskončno mnogo rešitev s spremenljivim predznakom za ta problem. Kolikor je nam znano, je bilo doslej najdenih le malo eksistenčnih rezultatov za ta problem. Velja omeniti, da nelinearni člen ni nujno 4-superlinearen v neskončnosti, konkretno vključuje nelinearnost potenčnega tipa ▫$|u|^{p-2}u$▫ za ▫$p$▫ iz intervala ▫$(2,4]$▫.

Keywords:neskončno rešitev s spremenljivim predznakom, problemi Kirchhoffovega tipa, invariantne množice, pojemajoč tok

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back