izpis_h1_title_alt

Triangulations with few vertices of manifolds with non-free fundamental group
ID Pavešić, Petar (Author)

.pdfPDF - Presentation file, Download (145,82 KB)
MD5: 443FAB51612241F72776EDAEC0D14BF6

Abstract
We study lower bounds for the number of vertices in a PL-triangulation of a given manifold $M$. While most of the previous estimates are based on the dimension and the connectivity of $M$, we show that further information can be extracted by studying the structure of the fundamental group of $M$ and applying techniques from the Lusternik-Schnirelmann category theory. In particular, we prove that every PL-triangulation of a $d$-dimensional manifold ($d\ge 3$) whose fundamental group is not free has at least $3d+1$ vertices. As a corollary, every $d$-dimensional ($\mathbb{Z}_p$-)homology sphere that admits a PL-triangulation with less than $3d$ vertices is homeomorphic to $S^d$. Another important consequence is that every triangulation with small links of $M$ is combinatorial.

Language:English
Keywords:minimal triangulation, PL-manifold, homology sphere, good cover, Lusternik-Schnirelmann category
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
Number of pages:Str. 1453-1463
Numbering:Vol. 149, iss. 6
PID:20.500.12556/RUL-115222 This link opens in a new window
UDC:515.164
ISSN on article:0308-2105
DOI:10.1017/prm.2018.136 This link opens in a new window
COBISS.SI-ID:18671705 This link opens in a new window
Publication date in RUL:18.04.2020
Views:1283
Downloads:444
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Proceedings of the Royal Society of Edinburgh
Shortened title:Proc. R. Soc. Edinb., Sect. A, Math.
Publisher:Royal Society of Edinburgh
ISSN:0308-2105
COBISS.SI-ID:26180608 This link opens in a new window

Secondary language

Language:Slovenian
Title:Majhne triangulacije mnogoterosti s fundamentalno grupo, ki ni prosta
Abstract:
V članku obravnavamo spodnje meje za število oglišč v PL-triangulacijah dane mnogoterosti $M$. Prej znane ocene uporabljajo dimenzijo in povezanost $M$, mi pa pokažemo, da je mogoče dobiti boljše ocene z uporabo fundamentalne grupe in tehnik Lusternik-Schnirelmannove kategorije. Glavni rezultat je, da je za PL-triangulacijo $d$-razsežne mnogoterosti ($d\ge 3$) katere fundamentalna grupa ni prosta potrebnih vsaj $3d + 1$ oglišč. Posebej, vsaka $d$-razsežna homološka sfera, ki dopušča kombinatorno triangulacijo z manj kot $3d$ oglišč je PL-homeomorfna običajni $d$-sferi. Druga pomembna posledica je, da so vse triangulacije z majhnimi okvirji kombinatorne.


Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back