izpis_h1_title_alt

Topological complexity of a map
ID Pavešić, Petar (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (460,71 KB)
MD5: E826FE5813320DE272A47D3625415E2D

Izvleček
We study certain topological problems that are inspired by applications to autonomous robot manipulation. Consider a continuous map $f \colon X \to Y$, where $f$ can be a kinematic map from the configuration space $X$ to the working space $Y$ of a robot arm or a similar mechanism. Then one can associate to $f$ a number $\mathrm{TC}(f)$, which is, roughly speaking, the minimal number of continuous rules that are necessary to construct a complete manipulation algorithm for the device. Examples show that $\mathrm{TC}(f)$ is very sensitive to small perturbations of f and that its value depends heavily on the singularities of $f$. This fact considerably complicates the computations, so we focus here on estimates of $\mathrm{TC}(f)$ that can be expressed in terms of homotopy invariants of spaces ▫$X$▫ and ▫$Y$▫, or that are valid if f satisfies some additional assumptions like, for example, being a fibration. Some of the main results are the derivation of a general upper bound for $\mathrm{TC}(f)$, invariance of $\mathrm{TC}(f)$ with respect to deformations of the domain and codomain, proof that $\mathrm{TC}(f)$ is a FHE invariant, and the description of a cohomological lower bound for $\mathrm{TC}(f)$. Furthermore, if $f$ is a fibration we derive more precise estimates for $\mathrm{TC}(f)$ in terms of the Lusternik-Schnirelmann category and the topological complexity of $X$ and $Y$. We also obtain some results for the important special case of covering projections.

Jezik:Angleški jezik
Ključne besede:topological complexity, robotics, kinematic map, fibration, covering
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2019
Št. strani:Str. 107-130
Številčenje:Vol. 21, no. 2
PID:20.500.12556/RUL-115221 Povezava se odpre v novem oknu
UDK:515.14
ISSN pri članku:1532-0073
DOI:10.4310/HHA.2019.v21.n2.a7 Povezava se odpre v novem oknu
COBISS.SI-ID:18590297 Povezava se odpre v novem oknu
Datum objave v RUL:18.04.2020
Število ogledov:1157
Število prenosov:362
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Homology, homotopy, and applications
Založnik:International Press
ISSN:1532-0073
COBISS.SI-ID:513079065 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Topološka kompleksnost preslikave
Izvleček:
V članku obravnavamo vprašanja, ki izvirajo iz primerov uporabe v krmiljenju robotov. Opazujemo preslikavo $f \colon X \to Y$, ki jo lahko razumemo kot kinematično preslikavo iz konfiguracijskega prostora $X$ v delovni prostor $Y$ robotske roke ali podobne naprave. Preslikavi $f$ lahko priredimo število $\mathrm{TC}(f)$, ki v grobem predstavlja minimalno število robustnih načrtov gibanja, ki so potrebni, da v celoti krmilimo dano napravo. Konkretni primeri kažejo, da je $\mathrm{TC}(f)$ precej občutljivo na majhne spremembe preslikave $f$, zlasti na njene singularnosti. Zato v članku največ časa posvetimo ocenam za $\mathrm{TC}(f)$, ki jih je mogoče izraziti na podlagi homotopskih invariant $X$ in $Y$ ter ocenam, ki jih dobimo, če je $f$ vlaknenje. Glavni rezultati obsegajo splošno veljavno zgornjo oceno za $\mathrm{TC}(f)$, invarianco glede na deformacije domene in kodomene ter kohomološke spodnje meje. Če je $f$ vlaknenje izpeljemo še natančnejše ocene z uporabo Lusternik-Schnirelmannove kategorije. Na koncu se še posvetimo pomembnem posebnem priimeru, ko je $f$ krovna projekcija.

Ključne besede:topološka komplesnost, robotika, kinematska preslikava, vlaknenje

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj