Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Estimating the performance of random forest versus multiple regression for predicting prices of the apartments
ID
Čeh, Marjan
(
Avtor
),
ID
Kilibarda, Milan
(
Avtor
),
ID
Lisec, Anka
(
Avtor
),
ID
Bajat, Branislav
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,17 MB)
MD5: 8644ACDA66D6133A3D28B582A7131500
URL - Izvorni URL, za dostop obiščite
http://www.mdpi.com/2220-9964/7/5/168
Galerija slik
Izvleček
The goal of this study is to analyse the predictive performance of the random forest machine learning technique in comparison to commonly used hedonic models based on multiple regression for the prediction of apartment prices. A data set that includes 7407 records of apartment transactions referring to real estate sales from 2008-2013 in the city of Ljubljana, the capital of Slovenia, was used in order to test and compare the predictive performances of both models. Apparent challenges faced during modelling included (1) the non-linear nature of the prediction assignment task; (2) input data being based on transactions occurring over a period of great price changes in Ljubljana whereby a 28% decline was noted in six consecutive testing years; and (3) the complex urban form of the case study area. Available explanatory variables, organised as a Geographic Information Systems (GIS) ready dataset, including the structural and age characteristics of the apartments as well as environmental and neighbourhood information were considered in the modelling procedure. All performance measures (R$^2$ values, sales ratios, mean average percentage error (MAPE), coefficient of dispersion (COD)) revealed significantly better results for predictions obtained by the random forest method, which confirms the prospective of this machine learning technique on apartment price prediction.
Jezik:
Angleški jezik
Ključne besede:
random forest
,
OLS
,
hedonic price model
,
PCA
,
Ljubljana
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2018
Št. strani:
16 str.
Številčenje:
Vol. 7, iss. 5, art. 168
PID:
20.500.12556/RUL-114444
UDK:
004.8:332.85(497.451.1)(049.5)
ISSN pri članku:
2220-9964
DOI:
10.3390/ijgi7050168
COBISS.SI-ID:
8417121
Datum objave v RUL:
28.02.2020
Število ogledov:
1358
Število prenosov:
541
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
ISPRS international journal of geo-information
Skrajšan naslov:
ISPRS int. j. geo-inf.
Založnik:
MDPI
ISSN:
2220-9964
COBISS.SI-ID:
18678550
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
02.05.2018
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojna metoda učenja
,
naključni gozd
,
metoda najmanjših kvadratov
,
hedonski cenovni model
,
analiza glavnih komponent
,
stanovanja
,
trg nepremičnin
,
Ljubljana
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Številka projekta:
451-03-3095/2014-09/34
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj