In this thesis, we present an algorithm that computes the one-dimensional persistent homology in a geodesic metric. The use of a geodesic metric allows us to approximate the shortest homology basis of the underlying space. First, we present the theoretical background of one-dimensional persistent homology of geodesic spaces. The main result of this section is the connection between the critical points of persistent homology and geodesic loops in the space, which form the shortest basis of the first homology group. Next, we present a new algorithm based on the theory. This algorithm approximates the shortest basis of the first homology group. Finally, we present some results that were computed using our implementation of the algorithm in the Julia programming language. We test the algorithm on a few synthetic data set and one, larger, more realistic data set.
|