izpis_h1_title_alt

Perfektoidni prostori : magistrsko delo
ID Havlas, Rok (Author), ID Moravec, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (710,47 KB)
MD5: 5DFB77A7B868E658EC5FE7E900E5D890

Abstract
Delo se ukvarja s perfektoidnimi prostori, razredom objektov v p-adični geometriji, ki jih je vpeljal fieldsov nagrajenec Peter Scholze leta 2011 v svoji doktorski disertaciji. Najprej si ogledamo nekaj osnov teorije valuacij in adičnih prostorov, ki predstavljajo geometrijsko ozadje teme. Nato definiramo perfektoidne kolobarje in polja in si ogledamo nekaj njihovih lastnosti. Vpeljemo funktor naklona, ki nam omogoča prehajanje med objekti v karakteristiki 0 in karakteristiki p. Za konec si še ogledamo perfektoidne prostore, ki so v grobem ravno skupaj zlepljene perfektoidne algebre, podobno kot so snopi ravno skupaj zlepljeni afini snopi.

Language:Slovenian
Keywords:valuacija, Huberjev kolobar, adičen prostor, perfektoidi, naklonska ekvivalenca, perfektoidni prostor
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-113804 This link opens in a new window
UDC:512
COBISS.SI-ID:18902873 This link opens in a new window
Publication date in RUL:05.02.2020
Views:1327
Downloads:281
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Perfectoid spaces
Abstract:
The work is about perfectoid spaces, a class of objects in p-adic geometry that was introduced by the Fields medalist Peter Scholze in his PhD thesis in 2011. First, we will discuss some basic theory of valuations and adic spaces, which represent the geometric background of the topic. Then we define perfectoid rings and fields and look at their properties. We introduce the tilt functor, a tool that helps us to transfer from characteristic 0 to characteristic p. At the end, we look at perfectoid spaces, which we get by glueing together perfectoid algebras, similarly to how we get the schemes from affine schemes.

Keywords:valuation, Huber ring, adic space, perfectoids, tilting equivalence, perfectoid space

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back