izpis_h1_title_alt

Napovedovanje stopnje interakcij z oglasi
ID HLADNIK, JUŠ (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window, ID Košir, Domen (Comentor)

.pdfPDF - Presentation file, Download (701,74 KB)
MD5: 5FD39DAFD97ABFA26EEFB6C7E6AD0EDF

Abstract
V spletnem oglaševanju je stopnja interakcij z oglasom (angl. click-through rate oz. CTR) ena izmed bolj pomembnih metrik o uspešnosti posameznega oglasa. V diplomskem delu se ukvarjamo z napovedjo CTR oglasov na posameznih spletnih straneh za novo kreirane oglase, ki v preteklosti še niso bili prikazani, in z ocenjevanjem atributov oglasov. Podatke o oglasih in klikih na oglase podjetja Celtra d.o.o. pripravimo na več različnih načinov in na njih preizkusimo več regresijskih metod strojnega učenja - naključni gozd, k-najbližjih sosedov in matrično faktorizacijo. Atribute ocenjujemo z RReliefF-om in razliko variance. Ugotovimo, da na CTR najbolj vpliva spletna stran in velikost oglasa. Na podlagi napovedi stopenj interakcij se lahko podjetje odloči, na katere spletne strani želi objaviti oglas in s tem povečati število klikov nanj.

Language:Slovenian
Keywords:naključni gozd, k-najbližjih sosedov, matrična faktorizacija, RReliefF, spletno oglaševanje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-113683 This link opens in a new window
COBISS.SI-ID:1538517955 This link opens in a new window
Publication date in RUL:24.01.2020
Views:1505
Downloads:255
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of degree of interaction with creatives
Abstract:
Click-through rate (CTR) is one of the most important measurements in online advertising that tells us how successful a certain ad is. In this thesis we work on CTR prediction of ads on individual websites for newly created ads that have not been published on any website in the past. We also work on evaluation of attributes that describe these ads. We use data about ads and ad clicks from Celtra d.o.o. and process it in different ways. Then we apply different machine learning methods - random forest, k-nearest neighbors, and matrix factorization. For attribute evaluation we use RReliefF and the difference of variance. We find out that the website, on which an ad is published, and the size of an ad influence CTR the most. Based on our predictions of CTR, a company can decide on which websites they should publish the ad thus enlarge the number of clicks on the ad.

Keywords:random forest, k-nearest neighbors, matrix factorization, RReliefF, online advertising

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back