izpis_h1_title_alt

Klepetalnik za govorni vnos zaužite hrane
ID GORNIK, TOM ALEKSANDER (Author), ID Bajec, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,18 MB)
MD5: 1C08DC355B6D0E961BA543682FD77FC5

Abstract
Danes ima uživanje zdrave in uravnotežene prehrane vse večji pomen. Eno izmed ključnih orodji pri doseganju omenjenega cilja je beleženje vrste in količine zaužite hrane. V okviru diplomske naloge najprej predstavimo razvoj klepetalnikov na splošno. Osrednja tema naloge pa je domensko omejeni klepetalnik za govorni vnos zaužite hrane. Osnova za njegovo delovanje je podatkovna baza s skoraj tisoč živili. Z uporabo klepetalnika želimo od uporabnika pridobiti dovolj podatkov, ki nam bodo omogočili identifikacijo živil, ki so bila vključena v posamezen obrok. Pri implementaciji klepetalnika smo uporabili nekaj metod za obdelavo naravnega jezika, kot so lematizacija, kosinusna razdalja, iskanje nizov in Levenshteinova razdalja. Klepetalnik je zmožen sistematično postavljati vprašanja ob nejasnem oz. nepopolnem govornem vnosu. Prototip rešitve je razvit v okolju Java Swing in je na voljo za uporabo na osebnih računalnikih.

Language:Slovenian
Keywords:klepetalnik, obdelava naravnega jezika, računalnik, strojno učenje, umetna inteligenca, lematizacija, hrana
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-113297 This link opens in a new window
COBISS.SI-ID:1538501571 This link opens in a new window
Publication date in RUL:19.12.2019
Views:2041
Downloads:223
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Chatbot for food input
Abstract:
Today the importance of having a healthy, nutritious diet is greater than ever. One of the main tools in achieving this goal is an efficient way to record the meals one has consumed throughout the day. This diploma thesis gives a brief overview of chatbots in general, but focuses on implementing the logic for a domain specific chatbot. The domain is determined by a database containing almost one thousand foods. The goal is to gather enough information from the user to identify the foods consumed during a particular meal. We use natural language processing (NLP) methods such as lemmatisation, cosine distance, string matching and levenshtein distance. The chatbot is also capable of forming systematical questions when the speech input is incomplete or unclear. The prototype of the chatbot is available as a Java Swing Application for personal computers.

Keywords:chatbot, natural language processing, computer, machine learning, artificial intelligence, lemmatization, food

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back