izpis_h1_title_alt

Implementacija priporočilnih sistemov za napoved novih izdelkov
ID Levstik, Klemen (Author), ID Sadikov, Aleksander (Mentor) More about this mentor... This link opens in a new window, ID Možina, Martin (Comentor)

.pdfPDF - Presentation file, Download (391,29 KB)
MD5: DC5ADAAADEC34070CA0B2CB15C2EE887

Abstract
V sklopu diplomskega dela so na podlagi dveh podatkovnih zbirk trgovin bili razviti trije različni priporočilni sistemi. Najprej sta podrobneje opisani obe podatkovni zbirki za spletno trgovino Instacart in Mercator. V nadaljevanju so predstavljena orodja in uporabljene metode, potrebne za postavitev sistemov. Sledi potek same implementacije priporočilnih modelov, kjer se podrobno obravnava celoten postopek izdelave. Sledi evalvacija oz. predstavitev rezultatov, kjer je ocenjena uspešnost implementiranih modelov. Najbolj uspešna modela sta predstavljala pristopa, ki uporabnikom nove izdelke priporočata na podlagi podobnosti izdelkov. V nadaljevanju je predstavljena tudi primerjava priporočilnih sistemov tega diplomskega dela, s prirejenim priporočilnim sistemom sorodnega dela. Z ozirom na problem priporočanja novih izdelkov uporabnikom, so se bolje obnesli modeli, implementirani v obsegu tega dela. Delo zaključujejo sklepne ugotovitve, ki izpostavljajo morebitne izboljšave implementiranih modelov.

Language:Slovenian
Keywords:priporočilni sistemi, priporočanje na podlagi podobnosti izdelkov, priporočanje na podlagi sodelovanja uporabnikov, evalvacija priporočilnih sistemov
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-113284 This link opens in a new window
COBISS.SI-ID:1538502083 This link opens in a new window
Publication date in RUL:18.12.2019
Views:1262
Downloads:211
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of recommender systems for predicting interesting new items
Abstract:
Within the scope of this thesis, three different recommender systems were created, each based on two stores's datasets. Firstly, store datasets are described in detail. Then, the tools and techniques used to implement the systems are presented. After that, the thesis describes the process of implementing the systems in detail. Then, evaluation of implemented recommender systems follows, describing their accuracy. The most successful two strategies to recommend new products to users turned out to be based on product similarity. Next, recommender systems, developed in this thesis, were compared to adapted system, created in closely related thesis. Given the nature of the problem, the recommender systems, developed in the scope of this thesis, performed better. Lastly, the thesis is concluded with possible upgrades, which have a potential to make the systems more accurate.

Keywords:recommender systems, item-based collaborative filtering, user-based collaborative filtering, evaluation of recommender systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back