Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Programiranje adaptivnih algoritmov na vezjih FPGA z ogrodjem OpenCL
ID
Palčič, Žan
(
Author
),
ID
Lotrič, Uroš
(
Mentor
)
More about this mentor...
,
ID
Bulić, Patricio
(
Comentor
)
PDF - Presentation file,
Download
(853,33 KB)
MD5: 573C40A54DCAB3EC5A71C2FCB33010F7
Image galllery
Abstract
V magistrskem delu smo razvili programsko ogrodje za realizacijo in pohitritev delovanja polno povezanih nevronskih mrež na vezjih FPGA. Nevronske mreže so izvedene v visoko-nivojskem ogrodju OpenCL z nekaj prilagoditvami za vezja FPGA. Zaradi učinkovitosti vezja FPGA pri računanju s števili v fiksni vejici in zaradi prilagodljivih polno povezanih nevronskih mrež, smo uporabili približne množilnike in števila v fiksni vejici. Uporabili smo iterativni logaritmični množilnik ILM in hibridni logaritmični množilnik LOBO. Z enostavnim iterativnim učenjem in z uporabo približnih množilnikov nismo uspeli naučiti nevronske mreže. Pri napovedovanju se je najbolje izkazala nevronska mreža s približnim množilnikom ILM z enim korekcijskim vezjem. S približnimi množilniki smo v večini primerov uspeli sintetizirati vezja z višjo frekvenco ure in hkrati dosegli bolj uravnoteženo porabo različnih gradnikov na vezju FPGA.
Language:
Slovenian
Keywords:
FPGA
,
OpenCL
,
adaptivni algoritmi
,
umetna nevronska mreža
,
približni množilniki
Work type:
Master's thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2019
PID:
20.500.12556/RUL-113279
COBISS.SI-ID:
1538500547
Publication date in RUL:
18.12.2019
Views:
1690
Downloads:
286
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PALČIČ, Žan, 2019,
Programiranje adaptivnih algoritmov na vezjih FPGA z ogrodjem OpenCL
[online]. Master’s thesis. [Accessed 24 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=113279
Copy citation
Share:
Secondary language
Language:
English
Title:
Programming adaptive algorithms on FPGA with OpenCL
Abstract:
The goal of master thesis was to develop a framework for the development and acceleration of fully connected neural networks in FPGAs. We implement fully connected neural networks using Intel® FPGA SDK for OpenCL. To fully exploit the efficiency of FPGA’s fixed-point arithmetic operations on one hand and adaptiveness of neural networks on the other hand, we use fixed-point number representation and approximate multipliers. We perform experiments with iterative logarithmic multiplier (ILM) and a hybrid logarithmic-booth encoding multiplier (LOBO). Using simple iterative learning methods with approximate multipliers we could not successfully train neural networks. Configuration of a neural network using ILM with one correction circuits shows the best results during inference. In most cases, using the approximate multipliers, the compiler synthesises circuits with higher clock frequency and more balanced usage of FPGA's resources.
Keywords:
FPGA
,
OpenCL
,
Adaptive algorithms
,
Artificial neural network
,
Approximate multipliers
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back